Patents by Inventor Emma B. Setterington

Emma B. Setterington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9448236
    Abstract: The disclosure generally relates to a particulate composition formed from a conductive polymer (e.g., conductive polyanilines, polypyrroles, polythiophenes) bound to magnetic nanoparticles (e.g., Fe(II)- and/or Fe(III)-based magnetic metal oxides). The particulate composition can be formed into a biologically enhanced, electrically active magnetic (BEAM) nanoparticle composition by further including a binding pair member (e.g., an antibody) bound to the conductive polymer of the particulate composition. Methods and kits employing the particulate composition and the BEAM nanoparticle composition also are disclosed.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: September 20, 2016
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Publication number: 20150323524
    Abstract: The disclosure generally relates to a particulate composition formed from a conductive polymer (e.g., conductive polyanilines, polypyrroles, polythiophenes) bound to magnetic nanoparticles (e.g., Fe(II)- and/or Fe(III)-based magnetic metal oxides). The particulate composition can be formed into a biologically enhanced, electrically active magnetic (BEAM) nanoparticle composition by further including a binding pair member (e.g., an antibody) bound to the conductive polymer of the particulate composition. Methods and kits employing the particulate composition and the BEAM nanoparticle composition also are disclosed.
    Type: Application
    Filed: January 20, 2015
    Publication date: November 12, 2015
    Inventors: EVANGELYN C. ALOCILJA, SUDESHNA PAL, EMMA B. SETTERINGTON
  • Patent number: 8936946
    Abstract: The disclosure generally relates to a particulate composition formed from a conductive polymer (e.g., conductive polyanilines, polypyrroles, polythiophenes) bound to magnetic nanoparticles (e.g., Fe(II)- and/or Fe(III)-based magnetic metal oxides). The particulate composition can be formed into a biologically enhanced, electrically active magnetic (BEAM) nanoparticle composition by further including a binding pair member (e.g., an antibody) bound to the conductive polymer of the particulate composition. Methods and kits employing the particulate composition and the BEAM nanoparticle composition also are disclosed.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 20, 2015
    Assignee: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Patent number: 8287810
    Abstract: A membrane strip biosensor device using a fluid mobile conductive composition of ferromagnetic particles bound to a conductive polymer bound to a capture reagent is described. The biosensor device is designed to detect analytes at low concentrations in near real-time with an electronic data collection system and can be small. The device can be used to detect pathogens, proteins, and other biological materials of interest in food, water, and environmental samples.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 16, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Publication number: 20090123939
    Abstract: The disclosure generally relates to a particulate composition formed from a conductive polymer (e.g., conductive polyanilines, polypyrroles, polythiophenes) bound to magnetic nanoparticles (e.g., Fe(II)- and/or Fe(III)-based magnetic metal oxides). The particulate composition can be formed into a biologically enhanced, electrically active magnetic (BEAM) nanoparticle composition by further including a binding pair member (e.g., an antibody) bound to the conductive polymer of the particulate composition. Methods and kits employing the particulate composition and the BEAM nanoparticle composition also are disclosed.
    Type: Application
    Filed: June 18, 2008
    Publication date: May 14, 2009
    Applicant: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Publication number: 20080314766
    Abstract: A membrane strip biosensor device (10, 20, 100) using a fluid mobile conductive composition of ferromagnetic particles bound to a conductive polymer bound to a capture reagent is described. The biosensor device is designed to detect analytes at low concentrations in near real-time with an electronic data collection system and can be small. The device can be used to detect pathogens, proteins, and other biological materials of interest in food, water, and environmental samples. The device can also be used for on-site diagnosis and against potential bioterrorism. Potential users include food processing plants, meat packaging facilities, fruit and vegetable packers, restaurants, food and water safety inspectors, food wholesalers and retailers, farms, homes, medical profession, import border crossing personnel, and the police force, military, space habitation and national security.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 25, 2008
    Applicant: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington