Patents by Inventor Emmanuel A. Vella

Emmanuel A. Vella has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7953325
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 31, 2011
    Assignee: Enablence USA FTTX Networks, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20100046947
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 26, 2009
    Publication date: February 25, 2010
    Applicant: ENABLENCE USA FTTX NETWORKS INC.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7623786
    Abstract: The present invention is generally drawn to optical network architecture that can include a multi-subscriber optical interface that can service a plurality of subscribers that are located in close proximity relative to one another. For example, the multi-subscriber optical interface can service multiple dwelling units such as an apartment complex that has many different subscribers to the optical network system. Further, the invention can also service subscribers over the same optical waveguide who may have different bandwidth needs, such as businesses, personal/home users and the like.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: November 24, 2009
    Assignee: Enablence USA FTTX Networks, Inc.
    Inventors: Paul F. Whittlesey, Emmanuel A. Vella, James O. Farmer
  • Patent number: 7606492
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 20, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Patent number: 7599622
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: October 6, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20080085117
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 3, 2007
    Publication date: April 10, 2008
    Inventors: James Farmer, John Kenny, Patrick Quinn, Thomas Tighe, Paul Whittlesey, Emmanuel Vella
  • Publication number: 20070292133
    Abstract: The present invention is generally drawn to optical network architecture that can include a multi-subscriber optical interface that can service a plurality of subscribers that are located in close proximity relative to one another. For example, the multi-subscriber optical interface can service multiple dwelling units such as an apartment complex that has many different subscribers to the optical network system. Further, the invention can also service subscribers over the same optical waveguide who may have different bandwidth needs, such as businesses, personal/home users and the like.
    Type: Application
    Filed: April 5, 2007
    Publication date: December 20, 2007
    Inventors: Paul Whittlesey, Emmanuel Vella, James Farmer
  • Patent number: 7269350
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: September 11, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7218855
    Abstract: The present invention is generally drawn to optical network architecture that can include a multi-subscriber optical interface that can service a plurality of subscribers that are located in close proximity relative to one another. For example, the multi-subscriber optical interface can service multiple dwelling units such as an apartment complex that has many different subscribers to the optical network system. Further, the invention can also service subscribers over the same optical waveguide who may have different bandwidth needs, such as businesses, personal/home users and the like.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: May 15, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: Paul F. Whittlesey, Emmanuel A. Vella, James O. Farmer
  • Publication number: 20070077069
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 5, 2007
    Inventors: James Farmer, Paul Whittlesey, Patrick Quinn, John Kenny, Emmanuel Vella, Thomas Tighe
  • Patent number: 7197244
    Abstract: Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: March 27, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Joe Caltagirone, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7130541
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: October 31, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Patent number: 7085281
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 1, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20060159457
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: December 1, 2005
    Publication date: July 20, 2006
    Applicant: Wave7 Optics, Inc.
    Inventors: James Farmer, John Kenny, Patrick Quinn, Thomas Tighe, Paul Whittlesey, Emmanuel Vella
  • Patent number: 6973271
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: December 6, 2005
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20050074241
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 19, 2004
    Publication date: April 7, 2005
    Applicant: Wave7 Optics, Inc.
    Inventors: James Farmer, John Kenny, Patrick Quinn, Thomas Tighe, Paul Whittlesey, Emmanuel Vella
  • Publication number: 20030086140
    Abstract: Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 8, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Joe Caltagirone, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030016692
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Application
    Filed: October 26, 2001
    Publication date: January 23, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030007220
    Abstract: The present invention is generally drawn to optical network architecture that can include a multi-subscriber optical interface that can service a plurality of subscribers that are located in close proximity relative to one another. For example, the multi-subscriber optical interface can service multiple dwelling units such as an apartment complex that has many different subscribers to the optical network system. Further, the invention can also service subscribers over the same optical waveguide who may have different bandwidth needs, such as businesses, personal/home users and the like.
    Type: Application
    Filed: May 20, 2002
    Publication date: January 9, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Paul F. Whittlesey, Emmanuel A. Vella, James O. Farmer
  • Publication number: 20020089725
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Application
    Filed: October 4, 2001
    Publication date: July 11, 2002
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe