Patents by Inventor Emmanuel Kanterakis

Emmanuel Kanterakis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9198172
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: November 24, 2015
    Assignee: GOOGLE INC.
    Inventor: Emmanuel Kanterakis
  • Publication number: 20150092714
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 2, 2015
    Inventor: Emmanuel KANTERAKIS
  • Patent number: 8873478
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 28, 2014
    Assignee: Google Inc.
    Inventor: Emmanuel Kanterakis
  • Patent number: 8718150
    Abstract: A disclosed code-division-multiple-access (CDMA) system has a base station (BS) and remote stations (RSs). A BS-spread-spectrum transmitter broadcasts a common-synchronization channel having a chip-sequence signal common to the remote stations served by the BS, and a frame-timing signal. A RS-spread-spectrum receiver receives the broadcast common-synchronization channel, and determines frame timing from the frame-timing signal. A first RS-spread-spectrum transmitter transmits an access-burst signal, which has a plurality of segments. Each access burst signal segment has a plurality of power levels. A BS-spread-spectrum receiver receives the access-burst signal at a detected-power level. In response to receiving the access-burst signal, a BS-spread-spectrum transmitter transmits an acknowledgment signal to the RS-spread-spectrum receiver.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: May 6, 2014
    Assignee: Golden Bridge Technology, Inc.
    Inventors: Emmanuel Kanterakis, Kourosh Parsa
  • Patent number: 8548026
    Abstract: An enhanced spread-spectrum uplink technique provides more efficient packet transfer in a wireless network. A mobile station requests to utilize an uplink channel, typically, a physical dedicated channel. If the network will grant access, a base station sends back a channel-request-granted message, which specifies a transmission start time and length. The base station starts related downlink transmissions at the start time, and at a time thereafter, the mobile station starts sending packet data over the uplink physical dedicated channel. After a transmission of no more that the specified length, the mobile station ceases its uplink transmission on the dedicated channel, and the base station and/or the mobile station can immediately release one or more channel resources. The grant message and/or the subsequent signaling communications from the base station may also specify a modulation scheme and a channelization code for the uplink channel.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 1, 2013
    Inventor: Emmanuel Kanterakis
  • Patent number: 8472863
    Abstract: The present invention has application to countering IEDs which are triggered remotely through a RF signal directed at, or the same operating environment as, receiver components embedded in, or part of, commercially manufactured cell phones or remote control devices. The invention exploits those situations where the underlying device (i.e., a commercial cell phone) is designed to operate in an environment where noise is characterized by an additive Gaussian noise model. The invention exploits the optimization of the matched filter for Gaussian noise by introducing a specific non-Gaussian noise. Further, the invention is directed to a family of jamming waveforms which exhibit increased effectiveness against a variety of digital and analog communications systems.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: June 25, 2013
    Assignee: Bank of America, N.A.
    Inventors: David Sheby, Emmanuel Kanterakis
  • Publication number: 20130010835
    Abstract: A disclosed code-division-multiple-access (CDMA) system has a base station (BS) and remote stations (RSs). A BS-spread-spectrum transmitter broadcasts a common-synchronization channel having a chip-sequence signal common to the remote stations served by the BS, and a frame-timing signal. A RS-spread-spectrum receiver receives the broadcast common-synchronization channel, and determines frame timing from the frame-timing signal. A first RS-spread-spectrum transmitter transmits an access-burst signal, which has a plurality of segments. Each access burst signal segment has a plurality of power levels. A BS-spread-spectrum receiver receives the access-burst signal at a detected-power level. In response to receiving the access-burst signal, a BS-spread-spectrum transmitter transmits an acknowledgment signal to the RS-spread-spectrum receiver.
    Type: Application
    Filed: September 15, 2012
    Publication date: January 10, 2013
    Inventors: Emmanuel KANTERAKIS, Kourosh Parsa
  • Patent number: 7965237
    Abstract: The present invention provides a method by which the position of a wireless emitter can be estimated by using a minimum of two wireless transceiver devices. The invention relies on physically moving the wireless transceiver devices to new position locations in order to obtain multiple time difference of arrival measurements. The time difference of arrival measurements can then be combined to derive estimates for the position of the emitter. At least one of the two wireless transceiver devices needs to be mobile with the other one fixed. Using this invention, any proportion of mobile and fixed transceiver devices can be used to derive the position of a wireless emitter. The wireless emitter to be located is not assumed to provide any information about itself to the wireless transceivers used for estimating its position location. The method is referred here as a Mobile-TDOA method or M-TDOA.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: June 21, 2011
    Assignee: CACI Technologies, Inc.
    Inventor: Emmanuel Kanterakis
  • Publication number: 20110080889
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Application
    Filed: December 10, 2010
    Publication date: April 7, 2011
    Applicant: GOLDEN BRIDGE TECHNOLOGY, INC.
    Inventor: Emmanuel KANTERAKIS
  • Patent number: 7869404
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: January 11, 2011
    Assignee: Golden Bridge Technology, Inc.
    Inventor: Emmanuel Kanterakis
  • Publication number: 20090303130
    Abstract: The present invention provides a method by which the position of a wireless emitter can be estimated by using a minimum of two wireless transceiver devices. The invention relies on physically moving the wireless transceiver devices to new position locations in order to obtain multiple time difference of arrival measurements. The time difference of arrival measurements can then be combined to derive estimates for the position of the emitter. At least one of the two wireless transceiver devices needs to be mobile with the other one fixed. Using this invention, any proportion of mobile and fixed transceiver devices can be used to derive the position of a wireless emitter. The wireless emitter to be located is not assumed to provide any information about itself to the wireless transceivers used for estimating its position location. The method is referred here as a Mobile-TDOA method or M-TDOA.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 10, 2009
    Inventor: Emmanuel Kanterakis
  • Publication number: 20090161635
    Abstract: A disclosed code-division-multiple-access (CDMA) system has a base station (BS) and remote stations (RSs). A BS-spread-spectrum transmitter broadcasts a common-synchronization channel having a chip-sequence signal common to the remote stations served by the BS, and a frame-timing signal. A RS-spread-spectrum receiver receives the broadcast common-synchronization channel, and determines frame timing from the frame-timing signal. A first RS-spread-spectrum transmitter transmits an access-burst signal, which has a plurality of segments. Each access burst signal segment has a plurality of power levels. A BS-spread-spectrum receiver receives the access-burst signal at a detected-power level. In response to receiving the access-burst signal, a BS-spread-spectrum transmitter transmits an acknowledgment signal to the RS-spread-spectrum receiver.
    Type: Application
    Filed: February 23, 2009
    Publication date: June 25, 2009
    Applicant: GOLDEN BRIDGE TECHNOLOGY, INC.
    Inventors: Emmanuel KANTERAKIS, Kourosh Parsa
  • Publication number: 20090156116
    Abstract: The present invention has application to countering IEDs which are triggered remotely through a RF signal directed at, or the same operating environment as, receiver components embedded in, or part of, commercially manufactured cell phones or remote control devices. The invention exploits those situations where the underlying device (i.e., a commercial cell phone) is designed to operate in an environment where noise is characterized by an additive Gaussian noise model. The invention exploits the optimization of the matched filter for Gaussian noise by introducing a specific non-Gaussian noise. Further, the invention is directed to a family of jamming waveforms which exhibit increased effectiveness against a variety of digital and analog communications systems.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 18, 2009
    Inventors: David Sheby, Emmanuel Kanterakis
  • Patent number: 7508861
    Abstract: A disclosed code-division-multiple-access (CDMA) system has a base station (BS) and remote stations (RSs). A BS-spread-spectrum transmitter broadcasts a common-synchronization channel having a chip-sequence signal common to the remote stations served by the BS, and a frame-timing signal. A RS-spread-spectrum receiver receives the broadcast common-synchronization channel, and determines frame timing from the frame-timing signal. A first RS-spread-spectrum transmitter transmits an access-burst signal, which has a plurality of segments. Each access burst signal segment has a plurality of power levels. A BS-spread-spectrum receiver receives the access-burst signal at a detected-power level. In response to receiving the access-burst signal, a BS-spread-spectrum transmitter transmits an acknowledgment signal to the RS-spread-spectrum receiver.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 24, 2009
    Assignee: Golden Bridge Technology, Inc.
    Inventors: Emmanuel Kanterakis, Kourosh Parsa
  • Publication number: 20090016273
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 15, 2009
    Applicant: GOLDEN BRIDGE TECHNOLOGY, INC.
    Inventor: Emmanuel KANTERAKIS
  • Patent number: 7436801
    Abstract: The equipment and techniques disclosed herein introduce a deferred acknowledgement (DACK), in the context of a protocol for a wireless station to request and obtain access to a wireless network resource for communication of one or more data packets. Essentially, a network node, such as a wireless base station, sends the DACK instruction in response to the access request telling the requesting station that the node has heard the request but that the requesting station should defer its transmission. The requesting station need not back off and re-initiate its access request. Instead, the requesting station waits for a later acknowledgement (ACK) granting access to a resource as requested. Although the DACK provides additional signaling, this technique can still utilize a fast ACK type message, that is to say a relatively short signaling packet.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: October 14, 2008
    Assignee: Golden Bridge Technology, Inc.
    Inventor: Emmanuel Kanterakis
  • Patent number: 7359427
    Abstract: An improvement to a code-division-multiple-access (CDMA) system employing spread-spectrum modulation, with the CDMA system having a base station (BS) and a plurality of remote stations. The base station has a BS-spread-spectrum transmitter and a BS-spread-spectrum receiver. A remote station has an RS-spread-spectrum transmitter and an RS-spread-spectrum receiver. The BS transmitter transmits a broadcast common-synchronization channel, which includes a frame-timing signal. The broadcast common-synchronization channel has a common chip-sequence signal, which is common to the plurality of remote stations. In response to the RS-spread-spectrum receiver receiving the broadcast common-synchronization channel, and determining frame timing from the frame-timing signal, an RS-spread-spectrum transmitter transmits an access-burst signal. The access-burst signal includes a collision-detection portion.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: April 15, 2008
    Assignee: Golden Bridge Technology, Inc.
    Inventors: Emmanuel Kanterakis, Kourosh Parsa
  • Publication number: 20080062951
    Abstract: An improvement to a code-division-multiple-access (CDMA) system employing spread-spectrum modulation, with the CDMA system having a base station (BS) and a plurality of remote stations. The base station has a BS-spread-spectrum transmitter and a BS-spread-spectrum receiver. A remote station has an RS-spread-spectrum transmitter and an RS-spread-spectrum receiver. The BS transmitter transmits a broadcast common-synchronization channel, which includes a frame-timing signal. The broadcast common-synchronization channel has a common chip-sequence signal, which is common to the plurality of remote stations. In response to the RS-spread-spectrum receiver receiving the broadcast common-synchronization channel, and determining frame timing from the frame-timing signal, an RS-spread-spectrum transmitter transmits an access-burst signal. The access-burst signal includes a collision-detection portion.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 13, 2008
    Applicant: GOLDEN BRIDGE TECHNOLOGY, INC
    Inventors: Emmanuel Kanterakis, Kourosh Parsa
  • Patent number: 7301988
    Abstract: An enhanced spread-spectrum uplink technique provides more efficient packet transfer in a wireless network. A mobile station requests to utilize an uplink channel, typically, a physical dedicated channel. If the network will grant access, a base station sends back a channel-request-granted message, which specifies a transmission start time and length. The base station starts related downlink transmissions at the start time, and at a time thereafter, the mobile station starts sending packet data over the uplink physical dedicated channel. After a transmission of no more that the specified length, the mobile station ceases its uplink transmission on the dedicated channel, and the base station and/or the mobile station can immediately release one or more channel resources. The grant message and/or the subsequent signaling communications from the base station may also specify a modulation scheme and a channelization code for the uplink channel.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: November 27, 2007
    Assignee: Golden Bridge Technology, Inc.
    Inventor: Emmanuel Kanterakis
  • Publication number: 20060268717
    Abstract: A radio network controller (RNC) application controls packet communications through base stations serving wireless remote stations. In the embodiments, the RNC stores each packet received for a wireless remote station in a buffer and maintains a BCN counter value representing the amount of buffered data. The RNC maintains a maximum accumulation timer (Timeracc), and it restarts an inter-packet arrival timer (Timerint) upon receipt of each packet for the station. The RNC initiates transmissions to the station in response to certain events, including expiration of either of the timers Timerint and Timeracc, and if the BCN counter value exceeds a threshold. However, the transmissions use either a dedicated channel cell-state or a forward access channel state, depending on which event triggered each transmission. The RNC also may instruct the remote station to return to the forward access channel state following communication in the dedicated channel cell-state.
    Type: Application
    Filed: August 1, 2006
    Publication date: November 30, 2006
    Applicant: Golden Bridge Technology, Inc.
    Inventor: Emmanuel Kanterakis