Patents by Inventor Emmanuel Rohart

Emmanuel Rohart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8524183
    Abstract: A composition is described that includes oxides of zirconium, cerium and another rare earth different from cerium, having a cerium oxide content not exceeding 50 wt % and, after calcination at 1000° C. for 6 hours, a maximal reducibility temperature not exceeding 500° C. and a specific surface of at least 45 m2/g. The composition can be prepared according to a method that includes continuously reacting a mixture that includes compounds of zirconium, cerium and another rare earth having a basic compound for a residence time not exceeding 100 milliseconds, wherein the precipitate is heated and contacted with a surfactant before calcination.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: September 3, 2013
    Assignee: Rhodia Operations
    Inventors: Simon Ifrah, Emmanuel Rohart, Julien Hernandez, Stéphane Denaire
  • Publication number: 20130210617
    Abstract: A composition based on cerium and niobium oxide in a proportion of niobium oxide of 2% to 20% is described. This composition can include zirconium oxide, optionally 50% of cerium oxide, 2% to 20% of niobium oxide, and at most 48% of zirconium oxide. Also described, is the use of the composition for treating exhaust gases.
    Type: Application
    Filed: July 5, 2011
    Publication date: August 15, 2013
    Applicant: Rhodia Operations
    Inventors: Julien Hernandez, Rui Jorge Coelho Marques, Emmanuel Rohart
  • Publication number: 20130195743
    Abstract: A method is described for treating a gas including nitrogen oxides (NOx). The method can include conducting a reduction reaction of the nitrogen oxides with a nitrogen reducing agent. Further described, is a catalyst used for the reduction reaction which is a catalytic system including a composition based on cerium oxide and including niobium oxide in a proportion by a mass of from 2% to 20%.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 1, 2013
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jayne Harris, Clare Jones
  • Publication number: 20130164201
    Abstract: A composition based on cerium, zirconium and tungsten is described. The composition has a content expressed as an oxide, of which cerium is from 5% to 30% of the composition, tungsten is from 2% to 17% of the composition, and the remainder of the composition is zirconium. After aging at 750° C. under an air atmosphere including 10% water, it has a two-phase crystallographic structure having a tetragonal zirconia phase and a monoclinic zirconia phase, with no presence of a crystalline phase including tungsten. The composition can be used as a catalyst, especially in an SCR process.
    Type: Application
    Filed: May 17, 2011
    Publication date: June 27, 2013
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Julien Hernandez, Emmanuel Rohart, Rui Jorge Coelho Marques, Deborah Jane Harris, Clare Jones
  • Patent number: 8460626
    Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide in an atomic ratio Ce/Zr of at least 1. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide with an atomic ratio Ce/Zr of at least 1 and at least one rare earth oxide other than cerium. After calcination at 1100° C., said composition has a specific surface of at least 9 m2/g in the second embodiment. The inventive composition can be used as a catalyst especially for the treatment of waste gases from internal combustion engines.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 11, 2013
    Assignee: Rhodia Electronics and Catalysis
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Patent number: 8444944
    Abstract: A method for decomposing N2O is described. The method uses, as a catalyst, an oxide based on cerium and lanthanum, which further includes at least one oxide of an element chosen from zirconium and rare earths other than cerium and lanthanum. This catalyst is stable, enabling it to be used at high temperatures.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 21, 2013
    Assignees: Rhodia Operations, Institut Regional des Materiaux Avances
    Inventors: Christian Hamon, Emmanuel Rohart
  • Publication number: 20130052108
    Abstract: A composition is described that includes oxides of zirconium, cerium and another rare earth different from cerium, having a cerium oxide content not exceeding 50 wt % and, after calcination at 1000° C. for 6 hours, a maximal reducibility temperature not exceeding 500° C. and a specific surface of at least 45 m2/g. The composition can be prepared according to a method that includes continuously reacting a mixture that includes compounds of zirconium, cerium and another rare earth having a basic compound for a residence time not exceeding 100 milliseconds, wherein the precipitate is heated and contacted with a surfactant before calcination.
    Type: Application
    Filed: January 10, 2011
    Publication date: February 28, 2013
    Applicant: RHODIA OPERATIONS
    Inventors: Simon Ifrah, Emmanuel Rohart, Julien Hernandez, Stéphane Denaire
  • Publication number: 20120328500
    Abstract: Compositions useful for treating the exhaust gases of diesel engines contain zirconium oxide, silicon oxide and at least one oxide of at least one element M selected from among titanium, aluminum, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese, in the following mass proportions of these different elements: silicon oxide: 5%-30%; M-element oxide: 1%-20%; the balance being zirconium oxide; such compositions also have an acidity, as measured by the methylbutynol test, of at least 90% and are prepared by placing a zirconium compound, a silicon compound, at least one M-element compound and a basic compound in a liquid medium, thereby generating a precipitate, maturing the precipitate in a liquid medium and separating and calcining the precipitate.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicants: MAGNESIUM ELEKTRON LIMITED, RHODIA OPERATIONS
    Inventors: Olivier LARCHER, Emmanuel ROHART, Stephan VERDIER, Heather BRADSHAW, Clive BUTLER, Deborah HARRIS, Mairead FEELEY, Guillaume CRINIERE
  • Patent number: 8192710
    Abstract: The inventive composition is based on cerium oxide and on zirconium oxide in an atomic proportion Ce/Zr of at least 1, and has a reducibility rate of at least 70% and a surface area of at least 15 m; 2; /g. This composition is obtained by a method in which: a mixture is made containing cerium and zirconium compounds; this mixture is provided with a basic compound whereby obtaining a precipitate that is heated in an aqueous medium; a surfactant-type additive or a polyethylene glycol or a carboxylic acid is added to this medium or to the separated precipitate; the mixture is ground; the precipitate obtained thereof is calcined under inert gas or vacuum, in a first period of time, at a temperature of at least 850 .iC and then under an oxidizing atmosphere, in a second period of time, at a temperature of at least 400° C.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: June 5, 2012
    Assignee: Rhodia Operations
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Patent number: 8158551
    Abstract: Catalyst compositions for the treatment of vehicular exhaust gases are based on zirconium and cerium oxides, have a cerium oxide content of at most 50% by weight, a level of reducibility of at least 95% after calcination in air at 600°, and a specific surface area after calcination for 4 hours at 1100° of at least 15 m2/g; such compositions are prepared by forming an aqueous mixture containing zirconium and cerium compounds, by heating this mixture to at least 100° and, after the heating, adjusting it to a basic pH, by adding a surfactant additive to the precipitate obtained from this mixture and by calcinating the precipitate in an inert gas or under vacuum at a temperature of at least 900° and then in an oxidizing atmosphere at a temperature of at least 600°.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 17, 2012
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Olivier Larcher, Emmanuel Rohart, Bernard Pacaud, Hirofumi Takemori, Eisaku Suda
  • Publication number: 20120035048
    Abstract: The composition is based on zirconium oxide and at least one additive selected from zirconium oxide and at least one additive chosen from praseodymium, lanthanum or neodymium oxides, has a specific surface of at least 29 m 2/g after calcination at 1000° C. during a period of 10 hours and is obtained by a method wherein a mixture of zirconium compounds and additive is precipitated with a base; the medium thus obtained, containing a precipitate, is heated and a compound chosen from anionic surfactants, non-ionic surfactants, polyethylene glycols, carboxylic acids and the salts thereof and surfactants such as the ethoxylates of caroboxymethyl fatty alcohols is added to the compound and the precipitate is calcinated; the composition can be used as a catalyst.
    Type: Application
    Filed: October 18, 2011
    Publication date: February 9, 2012
    Applicant: Rhodia Chimie
    Inventors: Olivier Larcher, Philippe Moissonnier, Emmanuel Rohart
  • Publication number: 20110243829
    Abstract: A method for decomposing N2O is described. The method uses, as a catalyst, an oxide based on cerium and lanthanum, which further includes at least one oxide of an element chosen from zirconium and rare earths other than cerium and lanthanum. This catalyst is stable, enabling it to be used at high temperatures.
    Type: Application
    Filed: September 28, 2009
    Publication date: October 6, 2011
    Applicant: Rhodia Operations
    Inventors: Christian Hamon, Emmanuel Rohart
  • Publication number: 20110206583
    Abstract: Catalyst compositions useful for the conversion of vehicular exhaust gases contain zirconium, cerium and yttrium oxides with a cerium oxide proportion of from 3% to 15%, and yttrium oxide proportions corresponding to the following conditions: 6% at most if the cerium oxide proportion is from 12% excluded and 15% included; 10% at most if the cerium oxide proportion is from 7% excluded and 12% included; 30% at most if the cerium oxide proportion is from 3% to 7% included, the balance being zirconium oxide; such compositions may optionally include an oxide of a rare earth selected from among lanthanum, neodymium and praseodymium.
    Type: Application
    Filed: April 21, 2009
    Publication date: August 25, 2011
    Applicant: RHODIA OPERATIONS
    Inventors: Olivier Larcher, Emmanuel Rohart, Simon Ifrah
  • Publication number: 20110166014
    Abstract: The inventive composition is based on cerium oxide and on zirconium oxide in an atomic proportion Ce/Zr of at least 1, and has a reducibility rate of at least 70% and a surface area of at least 15 m; 2; /g. This composition is obtained by a method in which: a mixture is made containing cerium and zirconium compounds; this mixture is provided with a basic compound whereby obtaining a precipitate that is heated in an aqueous medium; a surfactant-type additive or a polyethylene glycol or a carboxylic acid is added to this medium or to the separated precipitate; the mixture is ground; the precipitate obtained thereof is calcined under inert gas or vacuum, in a first period of time, at a temperature of at least 850 .iC and then under an oxidizing atmosphere, in a second period of time, at a temperature of at least 400 .° C.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 7, 2011
    Applicant: Rhodia Operations
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Patent number: 7964527
    Abstract: Catalytic compositions useful, e.g., for the treatment of internal combustion engine exhaust gases, are based on zirconium oxide in a weight proportion of at least 25%, from 15% to 60% of cerium oxide, from 10% to 25% of yttrium oxide, from 2% to 10% of lanthanum oxide and from 2% to 15% of another rare earth oxide, have a specific surface of at least 15 m2/g and a cubic phase, and are prepared from a mixture of zirconium, cerium, yttrium, lanthanum and the additional rare earth, by precipitating such mixture with a base, heating the precipitate in an aqueous medium, adding thereto a surfactant and calcining the precipitate.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: June 21, 2011
    Assignee: Rhodia Operations
    Inventors: Olivier Larcher, Stephan Verdier, Emmanuel Rohart, Aimin Huang
  • Patent number: 7939462
    Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide and at least one rare earth oxide other than cerium. After a first 4-hour period of calcination at 900 .C followed by a second 10-hour period of at 1000 .C, the specific surface variation thereof is 20% maximum in the first embodiment and 15% maximum in the second embodiment. The inventive composition can be used as a catalyst, i.e. in the treatment of waste gases from internal combustion engines.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: May 10, 2011
    Assignee: Rhodia Operations
    Inventors: Olivier Larcher, Emmanuel Rohart, David Monin
  • Patent number: 7939040
    Abstract: The inventive composition is based on cerium oxide and on zirconium oxide in an atomic proportion Ce/Zr of at least 1, and has a reducibility rate of at least 70% and a surface area of at least 15 m; 2; /g. This composition is obtained by a method in which: a mixture is made containing cerium and zirconium compounds; this mixture is provided with a basic compound whereby obtaining a precipitate that is heated in an aqueous medium; a surfactant-type additive or a polyethylene glycol or a carboxylic acid is added to this medium or to the separated precipitate; the mixture is ground; the precipitate obtained thereof is calcined under inert gas or vacuum, in a first period of time, at a temperature of at least 850° C. and then under an oxidizing atmosphere, in a second period of time, at a temperature of at least 400° C.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 10, 2011
    Assignee: Rhodia Operations
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Publication number: 20110097252
    Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide in an atomic ratio Ce/Zr of at least 1. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide with an atomic ratio Ce/Zr of at least 1 and at least one rare earth oxide other than cerium. After calcination at 1100° C., said composition has a specific surface of at least 9 m2/g in the second embodiment. The inventive composition can be used as a catalyst especially for the treatment of waste gases from internal combustion engines.
    Type: Application
    Filed: December 23, 2010
    Publication date: April 28, 2011
    Applicant: RHODIA ELECTRONICS AND CATALYSIS
    Inventors: Olivier LARCHER, Emmanuel Rohart
  • Patent number: 7892507
    Abstract: The processing of gases, in particular the exhaust gas of an internal combustion/diesel engine, entails catalytically oxidizing the carbon monoxide and hydrocarbons contained therein in an oxygen-rich medium, in the presence of a metal oxidation catalyst that includes a silica-containing zirconia support.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: February 22, 2011
    Assignee: Rhodia Chimie
    Inventors: Emmanuel Rohart, Stéphan Verdier, Aimin Huang
  • Publication number: 20110033352
    Abstract: Compositions based on zirconium oxide, including 1 to 20% yttrium oxide, 1 to 30% tungsten oxide and the balance zirconium oxide, have a specific surface area of at least 40 m2/g after calcination at 700° C. for 4 hours and an acidity measured by the methylbutynol test of at least 90%, and are useful as catalyst or catalyst supports, especially for the treatment of motor vehicle exhaust gases.
    Type: Application
    Filed: January 6, 2009
    Publication date: February 10, 2011
    Applicant: RHODIA OPERATIONS
    Inventors: Olivier Larcher, Emmanuel Rohart, Stephan Verdier, Guillaume Criniere, Deborah Harris, Heather Bradshaw