Patents by Inventor Emmanuel Saucedo-Flores

Emmanuel Saucedo-Flores has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8339758
    Abstract: A transient voltage suppressor and a method for protecting against surge and electrostatic discharge events. A semiconductor substrate of a first conductivity type has gate and anode regions of a second conductivity type formed therein. A PN junction diode is formed from a portion of the gate region and the semiconductor substrate. A cathode is formed adjacent to another portion of the gate region. A thyristor is formed from the cathode, the gate region, the substrate, and the anode region. Zener diodes are formed from other portions of the gate region and the semiconductor substrate. A second Zener diode has a breakdown voltage that is greater than a breakdown voltage of a first Zener diode and that is greater than a breakover voltage of the thyristor. The first Zener diode protects against a surge event and the second Zener diode protects against an electrostatic discharge event.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Mingjiao Liu, Ali Salih, Emmanuel Saucedo-Flores, Suem Ping Loo
  • Patent number: 8093133
    Abstract: Transient voltage suppressor and method for manufacturing the transient voltage suppressor having a dopant or carrier concentration in a portion of a gate region near a Zener region that is different from a dopant concentration in a portion of a gate region that is away from the Zener region.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 10, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Emmanuel Saucedo-Flores, Mingjiao Liu, Francine Y. Robb, Ali Salih
  • Publication number: 20090273876
    Abstract: A transient voltage suppressor and a method for protecting against surge and electrostatic discharge events. A semiconductor substrate of a first conductivity type has gate and anode regions of a second conductivity type formed therein. A PN junction diode is formed from a portion of the gate region and the semiconductor substrate. A cathode is formed adjacent to another portion of the gate region. A thyristor is formed from the cathode, the gate region, the substrate, and the anode region. Zener diodes are formed from other portions of the gate region and the semiconductor substrate. A second Zener diode has a breakdown voltage that is greater than a breakdown voltage of a first Zener diode and that is greater than a breakover voltage of the thyristor. The first Zener diode protects against a surge event and the second Zener diode protects against an electrostatic discharge event.
    Type: Application
    Filed: May 1, 2008
    Publication date: November 5, 2009
    Inventors: Mingjiao Liu, Ali Salih, Emmanuel Saucedo-Flores, Suem Ping Loo
  • Publication number: 20090273868
    Abstract: A transient voltage suppressor and a method for protecting against surge and electrostatic discharge events. A semiconductor substrate of a first conductivity type has gate and anode regions of a second conductivity type formed therein. A PN junction diode is formed from a portion of the gate region and the semiconductor substrate. A cathode is formed adjacent to another portion of the gate region. A thyristor is formed from the cathode, the gate region, the substrate, and the anode region. Zener diodes are formed from other portions of the gate region and the semiconductor substrate. A second Zener diode has a breakdown voltage that is greater than a breakdown voltage of a first Zener diode and that is greater than a breakover voltage of the thyristor. The first Zener diode protects against a surge event and the second Zener diode protects against an electrostatic discharge event.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 5, 2009
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Mingjiao Liu, Ali Salih, Emmanuel Saucedo-Flores, Suem Ping Loo
  • Publication number: 20090250720
    Abstract: Transient voltage suppressor and method for manufacturing the transient voltage suppressor having a dopant or carrier concentration in a portion of a gate region near a Zener region that is different from a dopant concentration in a portion of a gate region that is away from the Zener region.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 8, 2009
    Inventors: Emmanuel Saucedo-Flores, Mingjiao Liu, Francine Y. Robb, Ali Salih
  • Patent number: 7339203
    Abstract: A thyristor and a method for manufacturing the thyristor that includes a gate region extending from the first major surface into a semiconductor substrate and an anode region extending from the second major surface into the semiconductor substrate. A cathode region extends into a portion of the gate region. Optionally, enhanced doped regions extend into the gate and anode regions. A mesa structure having a height HG is formed from the first major surface and a mesa structure having a height HA is formed from the second major surface. The gate region extends under the first major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HG. The anode region extends under the second major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HA.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 4, 2008
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Emmanuel Saucedo-Flores, David M. Culbertson
  • Publication number: 20070145407
    Abstract: A thyristor and a method for manufacturing the thyristor that includes a gate region extending from the first major surface into a semiconductor substrate and an anode region extending from the second major surface into the semiconductor substrate. A cathode region extends into a portion of the gate region. Optionally, enhanced doped regions extend into the gate and anode regions. A mesa structure having a height HG is formed from the first major surface and a mesa structure having a height HA is formed from the second major surface. The gate region extends under the first major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HG. The anode region extends under the second major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HA.
    Type: Application
    Filed: December 22, 2005
    Publication date: June 28, 2007
    Inventors: Emmanuel Saucedo-Flores, David Culbertson
  • Patent number: 7205583
    Abstract: A thyristor and a method for manufacturing the thyristor that includes providing a semiconductor substrate that has first and second major surfaces. A first doped region is formed in the semiconductor substrate, wherein the first doped extends from the first major surface into the semiconductor substrate. The first doped region has a vertical boundary that has a notched portion. A second doped region is formed in first doped region, wherein the second doped region extends from the first major surface into the first doped region. A third doped region is formed in the semiconductor substrate, wherein the third doped region extends from the second major surface into the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Emmanuel Saucedo-Flores