Patents by Inventor Encarnacion Antonia Garcia Villora

Encarnacion Antonia Garcia Villora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9159800
    Abstract: An AlN single crystal Schottky barrier diode including: an AlN single crystal substrate having a defect density of 106 cm?2 or less and a thickness of 300 ?m or more; a first electrode formed on one surface of the AlN single crystal substrate; and a second electrode formed on one surface of the AlN single crystal substrate while being spaced apart from the first electrode, the AlN single crystal Schottky barrier diode being provided with: a rectifying property such that an on-off ratio at the time of applying 10 V and ?40 V is at least 103 even at a high temperature of 573 K; a high voltage resistance such that a voltage can be applied at least within a range of ?40 V to 10 V; and a low on-resistance characteristic such that a current begins to flow at no greater than 5 V.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 13, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yoshihiro Irokawa, Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Patent number: 9117974
    Abstract: A light emitting element that includes a Ga2O3 substrate; an AlxGa1-xN buffer layer (0?×?1) formed on the Ga2O3 substrate; an n-GaN layer formed on the AlxGa1-xN buffer layer; an p-GaN layer formed on a portion of the n-GaN layer; an n-electrode formed on a portion of the n-GaN layer; and an p-electrode formed on the p-GaN layer.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: August 25, 2015
    Assignee: KOHA CO., LTD.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Publication number: 20150083967
    Abstract: A phosphor (and a method for manufacturing the same, and a light-emitting device that uses this phosphor) includes single crystals including YAG crystals as a mother crystal, the quantum efficiency of the phosphor at 25° C. being 92% or higher at an excitation light wavelength of 460 nm.
    Type: Application
    Filed: April 18, 2013
    Publication date: March 26, 2015
    Inventors: Makoto Watanabe, Daisuke Inomata, Kazuo Aoki, Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Publication number: 20150034961
    Abstract: An AlN single crystal Schottky barrier diode including: an AlN single crystal substrate having a defect density of 106 cm?2 or less and a thickness of 300 ?m or more; a first electrode formed on one surface of the AlN single crystal substrate; and a second electrode formed on one surface of the AlN single crystal substrate while being spaced apart from the first electrode, the AlN single crystal Schottky barrier diode being provided with: a rectifying property such that an on-off ratio at the time of applying 10 V and ?40 V is at least 103 even at a high temperature of 573 K; a high voltage resistance such that a voltage can be applied at least within a range of ?40 V to 10 V; and a low on-resistance characteristic such that a current begins to flow at no greater than 5 V.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 5, 2015
    Inventors: Yoshihiro Irokawa, Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Publication number: 20150009562
    Abstract: An optical material used in a UV-excited yellow light-emitting material and an optical isolator, capable of emitting yellow light stably and highly efficiently even if a large current is fed to obtain the high luminance emission. The optical material used for the UV-excited yellow light-emitting material (2) and the optical isolator (210) is an oxide containing Ce, which is a terbium cerium aluminum garnet type single crystal wherein a part of terbium of a terbium aluminum garnet type single crystal is substituted by cerium. The ratio of number of moles of cerium to the total number of moles of terbium and cerium, namely the composition ratio of cerium, preferably falls within the range from 0.01 mol % to 50 mol %. A part of aluminum may be substituted by scandium or further by any one of terbium, cerium, yttrium, lutetium, ytterbium, and thulium.
    Type: Application
    Filed: April 27, 2013
    Publication date: January 8, 2015
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Publication number: 20140361328
    Abstract: A UV photoexcited red light-emitting material comprising a fluoride single crystal represented by the chemical formula: M1?xRExF2+x?w, wherein M is at least one metal element belonging to Group 2 of the Periodic Table selected from the group consisting of Be, Mg, Ca, Sr, and Ba, RE is a rare earth element, and the relationships: 0<x?0.4 and 0?w?0.5 are satisfied.
    Type: Application
    Filed: April 25, 2013
    Publication date: December 11, 2014
    Inventors: Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Publication number: 20140306237
    Abstract: A light emitting element that includes a Ga2O3 substrate; an AlxGa1?xN buffer layer (0?×?1) formed on the Ga2O3 substrate; an n-GaN layer formed on the AlxGa1?xN buffer layer; an p-GaN layer formed on a portion of the n-GaN layer; an n-electrode formed on a portion of the n-GaN layer; and an p-electrode formed on the p-GaN layer.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8808656
    Abstract: A garnet-type single crystal is represented by a general formula, A3B2C3O12 (having a crystal structure with three sites A, B and C occupied by cations, wherein A represents an element occupying the site A, B represents an element occupying the site B, C represents an element occupying the site C, O represents an oxygen atom), and contains fluorine, in which the fluorine attains any one or both of substituting for the oxygen atom or compensating for oxygen defect.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: August 19, 2014
    Assignee: National Institute for Materials Science
    Inventors: Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora, Yasuhiko Kuwano
  • Patent number: 8791466
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 29, 2014
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8778225
    Abstract: An object of the invention is to provide an iodide single crystal material that provides a scintillator material for the next-generation TOF-PET, and a production process for high-quality iodide single crystal materials. The iodide single crystal material of the invention having the same crystal structure as LuI3 and activated by a luminescence center RE where RE is at least one element selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb is characterized in that a part or the whole of lutetium (Lu) in said iodide single crystal material is substituted by Y and/or Gd.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: July 15, 2014
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora, Kenji Kitamura
  • Patent number: 8747553
    Abstract: A method of growing a p-type thin film of ?-Ga2O3 includes preparing a substrate including a ?-Ga2O3 single crystal, and growing a p-type thin film of ?-Ga2O3 on the substrate. The p-type thin film is grown in a manner that Ga in the thin film is replaced by a p-type dopant selected from H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 10, 2014
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 8674399
    Abstract: A light-emitting element includes a ?-Ga2O3 substrate, a GaN-based semiconductor layer formed on the ?-Ga2O3 substrate, and a double-hetero light-emitting layer formed on the GaN-based semiconductor layer.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 18, 2014
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20130308187
    Abstract: The object(s) of the invention is to provide a Faraday rotator, an optical isolator, and optical processing equipment, which has a transmittance higher than that of TGG, is capable of upsizing, and has a higher performance index in the visible wavelength region in general, and on wavelengths of up to 400 nm in particular. The Faraday rotator is characterized by containing as a main component a fluoride represented by the following general formula (1) or (2): RE1F3-x??(1) LiRE2F4-x??(2) where 0?x<0.1, and RE1 or RE2 is at least one element selected from the group of rare earth elements.
    Type: Application
    Filed: March 23, 2012
    Publication date: November 21, 2013
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Kiyoshi Shimamura, Encarnacion Antonia Garcia Villora
  • Publication number: 20130248902
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 26, 2013
    Applicant: KOHA CO., LTD.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Patent number: 8450747
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1-X-Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 28, 2013
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Antonia Garcia Villora, Kazuo Aoki
  • Publication number: 20120304918
    Abstract: A method of growing a p-type thin film of ?-Ga2O3 includes preparing a substrate including a ?-Ga2O3 single crystal, and growing a p-type thin film of ?-Ga2O3 on the substrate. The p-type thin film is grown in a manner that Ga in the thin film is replaced by a p-type dopant selected from H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 8262796
    Abstract: A thin-film single crystal growing method includes preparing a substrate, irradiating an excitation beam on a metallic target made of a pure metal or an alloy in a predetermined atmosphere, and combining chemical species including any of atoms, molecules, and ions released from the metallic target by irradiation of the excitation beam with atoms contained in the predetermined atmosphere to form a thin film on the substrate.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: September 11, 2012
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Publication number: 20110253973
    Abstract: A light-emitting element includes a ?-Ga2O3 substrate, a GaN-based semiconductor layer formed on the ?-Ga2O3 substrate, and a double-hetero light-emitting layer formed on the GaN-based semiconductor layer.
    Type: Application
    Filed: June 22, 2011
    Publication date: October 20, 2011
    Applicant: KOHA CO., LTD.
    Inventors: Noburo Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 7977673
    Abstract: To provide a semiconductor layer in which a GaN system epitaxial layer having high crystal quality can be obtained. The semiconductor layer includes a ?-Ga2O3 substrate 1 made of a ?-Ga2O3 single crystal, a GaN layer 2 formed by subjecting a surface of the ?-Ga2O3 substrate 1 to nitriding processing, and a GaN growth layer 3 formed on the GaN layer 2 through epitaxial growth by utilizing an MOCVD method. Since lattice constants of the GaN layer 2 and the GaN growth layer 3 match each other, and the GaN growth layer 3 grows so as to succeed to high crystalline of the GaN layer 2, the GaN growth layer 3 having high crystalline is obtained.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: July 12, 2011
    Assignee: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora
  • Patent number: 7800105
    Abstract: To provide a Ga2O3 compound semiconductor device in which a Ga2O3 system compound is used as a semiconductor, which has an electrode having ohmic characteristics adapted to the Ga2O3 system compound, and which can make a heat treatment for obtaining the ohmic characteristics unnecessary. An n-side electrode 20 including at least a Ti layer is formed on a lower surface of an n-type ?-Ga2O3 substrate 2 by utilizing a PLD method. This n-side electrode 20 has ohmic characteristics at 25° C. The n-side electrode 20 may have two layer including a Ti layer and an Au layer, three layers including a Ti layer, an Al layer and an Au layer, or four layers including a Ti layer, an Al layer, a Ni layer and an Au layer.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 21, 2010
    Assignee: Waseda University
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Antonia Garcia Villora