Patents by Inventor Encarnacion Garcia Villora

Encarnacion Garcia Villora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110175028
    Abstract: A garnet-type single crystal is represented by a general formula, A3B2C3O12 (having a crystal structure with three sites A, B and C occupied by cations, wherein A represents an element occupying the site A, B represents an element occupying the site B, C represents an element occupying the site C, O represents an oxygen atom), and contains fluorine, in which the fluorine attains any one or both of substituting for the oxygen atom or compensating for oxygen defect.
    Type: Application
    Filed: July 24, 2009
    Publication date: July 21, 2011
    Inventors: Kiyoshi Shimamura, Encarnacion Garcia Villora, Yasuhiko Kuwano
  • Publication number: 20060289860
    Abstract: To provide a semiconductor layer in which a GaN system epitaxial layer having high crystal quality can be obtained. The semiconductor layer includes a ?-Ga2O3 substrate 1 made of a ?-Ga2O3 single crystal, a GaN layer 2 formed by subjecting a surface of the ?-Ga2O3 substrate 1 to nitriding processing, and a GaN growth layer 3 formed on the GaN layer 2 through epitaxial growth by utilizing an MOCVD method. Since lattice constants of the GaN layer 2 and the GaN growth layer 3 match each other, and the GaN growth layer 3 grows so as to succeed to high crystalline of the GaN layer 2, the GaN growth layer 3 having high crystalline is obtained.
    Type: Application
    Filed: August 4, 2004
    Publication date: December 28, 2006
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Garcia Villora
  • Publication number: 20060223287
    Abstract: A method of forming a low temperature-grown buffer layer having the steps of: placing a Ga2O3 substrate in a MOCVD apparatus; providing a H2 atmosphere in the MOCVD apparatus and setting a buffer layer growth condition having an atmosphere temperature of 350° C. to 550° C.; and supplying a source gas having two or more of TMG, TMA and NH3 onto the Ga2O3 substrate in the buffer layer growth condition to form the low temperature-grown buffer layer on the Ga2O3 substrate.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 5, 2006
    Applicants: Toyoda Gosei Co., Ltd, KOHA Co., Ltd.
    Inventors: Yasuhisa Ushida, Daisuke Shinoda, Daisuke Yamazaki, Koji Hirata, Yuhei Ikemoto, Naoki Shibata, Kazuo Aoki, Encarnacion Garcia Villora, Kiyoshi Shimamura
  • Publication number: 20060150891
    Abstract: A method for growing a ?-Ga2O3 single crystal hardly cracking and having a weakened twinning tendency and an improved crystallinity, a method for growing a thin-film single crystal with high quality, a GazO3 light-emitting device capable of emitting a light in the ultraviolet region, and its manufacturing method are disclosed. In an infrared-heating single crystal manufacturing system, a seed crystal and polycrystalline material are rotated in mutually opposite directions and heated, and a ?-Ga2O3 single crystal is grown in one direction selected from among the a-axis <100> direction, the b-axis <010> direction, and the c-axis <001> direction. A thin film of a ?-Ga2O3 single crystal is formed by PLD. A laser beam is applied to a target to excite atoms constituting the target Ga atoms are released from the target by thermal and photochemical actions. The free Ga atoms are bonded to radicals in the atmosphere in the chamber.
    Type: Application
    Filed: February 16, 2004
    Publication date: July 13, 2006
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Kazuo Aoki, Encarnacion Garcia Villora
  • Publication number: 20060001031
    Abstract: A light emitting element has a substrate of gallium oxides and a pn-junction formed on the substrate. The substrate is of gallium oxides represented by: (AlXInYGa(1?X?Y))2O3 where 0?x?1, 0?y?1 and 0?x+y?1. The pn-junction has first conductivity type substrate, and GaN system compound semiconductor thin film of second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: August 25, 2005
    Publication date: January 5, 2006
    Applicant: Koha Co., Ltd.
    Inventors: Noboru Ichinose, Kiyoshi Shimamura, Yukio Kaneko, Encarnacion Garcia Villora, Kazuo Aoki