Patents by Inventor Enos Kiremire

Enos Kiremire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130158267
    Abstract: Metal complex of Zinc(II) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite Plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of 172.4. This paper describes the synthesis, characterization and biological results of the said metal complex containing deprotonated 3-[1-(2-pyridyl) ethylidene] hydrazinecarbodithioate ligand.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 20, 2013
    Inventor: Enos Kiremire
  • Publication number: 20130150582
    Abstract: Metal complex of Nickel (II) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of (1.4). This paper describes the synthesis, characterization and biological results of the said metal complex containing deprotonated 3-[1-(2-pyridyl) ethylidene] hydrazinecarbodithioate ligand.
    Type: Application
    Filed: November 19, 2010
    Publication date: June 13, 2013
    Inventor: Enos Kiremire
  • Publication number: 20130137872
    Abstract: Metal complex of Copper (II) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the copper complex has been analyzeThis paper describes the synthesis and characterization of the said metal complex containing deprotonated 3-[1-(2-pyridyl) ethylidene]hydrazinecarbodithioate ligand (FIG. 1).
    Type: Application
    Filed: November 19, 2010
    Publication date: May 30, 2013
    Inventor: Enos Kiremire
  • Publication number: 20130137871
    Abstract: Metal complex of Manganese(II) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite Plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of 132.2 This paper describes the synthesis, characterization and biological results of the said metal complex containing deprotonated 3-[1-(2-pyridyl)ethylidene]hydrazinecarbodithioate ligand (FIG. 1).
    Type: Application
    Filed: November 19, 2010
    Publication date: May 30, 2013
    Inventor: Enos Kiremire
  • Publication number: 20130109857
    Abstract: Metal complex of Nickel (II) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite Plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of (1.4). This paper describes the synthesis, characterization and biological results of the said metal complex containing deprotonated 3-[1-(2-pyridyl) ethylidene] hydrazinecarbodithioate ligand.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 2, 2013
    Inventor: Enos Kiremire
  • Publication number: 20130096307
    Abstract: Metal complex of Cobalt (11) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-IR spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite Plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of (0.5). This paper describes the synthesis, characterization and biological results of the said metal complex containing the deprotonated 3-[1-(2-pyridyl) ethylidene] hydrazinecarbodithioate ligand (FIG. 1).
    Type: Application
    Filed: November 19, 2010
    Publication date: April 18, 2013
    Applicant: UNIVERSITY OF NAMIBIA
    Inventor: Enos Kiremire
  • Publication number: 20130096308
    Abstract: Metal complex of Iron (U) containing a dithio-based ligand have been synthesized and characterized by elemental analysis, mass spectrometry, Proton NMR and FT-ER spectrometry. A single crystal X-ray structure of the cadmium complex has been analyzed. The metal complex was subjected to biological tests on falcipain-2 (FP-2) and falcipain-3 (FP-3) cysteine protease enzymes from the malaria parasite Plasmodium falciparum. They were further tested in vitro against chloroquine resistant strain (W2). Whereas the potency of the metal complexes was weaker than the control regarding the FP-2 and FP-3, the potency of metal complexes was found to be exceedingly greater than the control when tested against the chloroquine resistant strain (W2) with a strength ratio of (0.5). This paper describes the synthesis, characterization and biological results of the said metal complex containing deprotonated 3-[1-(2-pyridyl) ethylidene] hydrazinecarbodithioate ligand (FIG. 1).
    Type: Application
    Filed: November 19, 2010
    Publication date: April 18, 2013
    Inventor: Enos Kiremire