Patents by Inventor Enri Duqi

Enri Duqi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11418888
    Abstract: An actuation structure of a MEMS electroacoustic transducer is formed in a die of semiconductor material having a monolithic body with a front surface and a rear surface extending in a horizontal plane x-y plane and defined in which are: a frame; an actuator element arranged in a central opening defined by the frame; cantilever elements, coupled at the front surface between the actuator element and the frame; and piezoelectric regions arranged on the cantilever elements and configured to be biased to cause a deformation of the cantilever elements by the piezoelectric effect. A first stopper arrangement is integrated in the die and configured to interact with the cantilever elements to limit a movement thereof in a first direction of a vertical axis orthogonal to the horizontal plane, x-y plane towards the underlying central opening.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 16, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Fabrizio Cerini, Enri Duqi, Silvia Adorno, Lorenzo Baldo
  • Publication number: 20220185661
    Abstract: A MEMS device formed by a substrate, having a surface; a MEMS structure arranged on the surface; a first coating region having a first Young's modulus, surrounding the MEMS structure at the top and at the sides and in contact with the surface of the substrate; and a second coating region having a second Young's modulus, surrounding the first coating region at the top and at the sides and in contact with the surface of the substrate. The first Young's modulus is higher than the second Young's modulus.
    Type: Application
    Filed: March 1, 2022
    Publication date: June 16, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Enri DUQI, Marco DEL SARTO, Lorenzo BALDO
  • Patent number: 11358862
    Abstract: A micro-electro-mechanical device, comprising a monolithic body of semiconductor material accommodating a first buried cavity; a sensitive region facing the first buried cavity; a second cavity facing the first buried cavity; a decoupling trench extending from the monolithic body and separating the sensitive region from a peripheral portion of the monolithic body; a cap die, forming an ASIC, bonded to and facing the first face of the monolithic body; and a first gap between the cap die and the monolithic body. The device also comprises at least one spacer element between the monolithic body and the cap die; at least one stopper element between the monolithic body and the cap die; and a second gap between the stopper element and one between the monolithic body and the cap die. The second gap is smaller than the first gap.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: June 14, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Enri Duqi, Lorenzo Baldo, Marco Del Sarto, Mikel Azpeitia Urquia
  • Publication number: 20220169498
    Abstract: A semiconductor device includes: a substrate; a transduction microstructure integrated in the substrate; a cap joined to the substrate and having a first face adjacent to the substrate and a second, outer, face; and a channel extending through the cap from the second face to the first face and communicating with the transduction microstructure. A protective membrane made of porous polycrystalline silicon permeable to aeriform substances is set across the channel.
    Type: Application
    Filed: November 23, 2021
    Publication date: June 2, 2022
    Applicants: STMICROELECTRONICS S.R.L., STMicroelectronics International N.V.
    Inventors: Enri DUQI, Lorenzo BALDO, Paolo FERRARI, Benedetto Vigna, Flavio Francesco VILLA, Laura Maria CASTOLDI, Ilaria GELMI
  • Publication number: 20220163383
    Abstract: Radiation sensor including a detection assembly and a chopper assembly, which are mechanically coupled to delimit a main cavity; and wherein the chopper assembly includes: a suspended movable structure, which extends in the main cavity; and an actuation structure, which is electrically controllable to cause a change of position of the suspended movable structure. The detection unit includes a detection structure, which faces the main cavity and includes a number of detection devices. The suspended movable structure includes a first shield of conductive material, which shields the detection devices from the radiation, the shielding of the detection devices being a function of the position of the suspended movable structure.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Michele VAIANA, Enri DUQI, Maria Eloisa CASTAGNA
  • Patent number: 11294168
    Abstract: A MEMS micromirror device includes a monolithic body of semiconductor material having a first main surface and a second main surface, with the monolithic body having an opening extending from the second main surface and including a suspended membrane of monocrystalline semiconductor material extending between the opening and the first main surface of the monolithic body. The suspended membrane includes a supporting frame and a mobile mass carried by the supporting frame and rotatable about an axis parallel to the first main surface, with the mobile mass having a width less than a width of the opening. A reflecting region extends over the mobile mass.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: April 5, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Enri Duqi, Lorenzo Baldo, Roberto Carminati, Flavio Francesco Villa
  • Patent number: 11254561
    Abstract: A packaged pressure sensor, comprising: a MEMS pressure-sensor chip; and an encapsulating layer of elastomeric material, in particular PDMS, which extends over the MEMS pressure-sensor chip and forms a means for transferring a force, applied on a surface thereof, towards the MEMS pressure-sensor chip.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: February 22, 2022
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Enri Duqi, Bruno Murari, Sebastiano Conti
  • Publication number: 20220011567
    Abstract: A MEMS micromirror device is formed in a package including a containment body and a lid transparent to a light radiation. The package forms a cavity housing a tiltable platform having a reflecting surface. A metastructure is formed on the lid and/or on the reflecting surface and includes a plurality of diffractive optical elements.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 13, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Roberto CARMINATI, Nicolo' BONI, Massimiliano MERLI, Enri DUQI
  • Patent number: 11079298
    Abstract: A MEMS pressure sensor includes a monolithic body of semiconductor material having a first face and a second face and housing a first buried cavity and a second buried cavity, arranged under the first buried cavity and projecting laterally therefrom. A first sensitive region is formed between the first buried cavity and the first face at a first depth, and a second sensitive region is formed between the second buried cavity and the first face at a second depth greater than the first depth. The monolithic body also houses a first piezoresistive sensing element and a second piezoresistive sensing element, integrated in the first and second sensitive regions, respectively.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 3, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Enri Duqi, Lorenzo Baldo
  • Publication number: 20210229984
    Abstract: To manufacture an oscillating structure, a wafer is processed by: forming torsional elastic elements; forming a mobile element connected to the torsional elastic elements; processing the first side of the wafer to form a mechanical reinforcement structure; and processing the second side of said wafer by steps of chemical etching, deposition of metal material, and/or deposition of piezoelectric material. Processing of the first side of the wafer is carried out prior to processing of the second side of the wafer so as not to damage possible sensitive structures formed on the first side of the wafer.
    Type: Application
    Filed: January 22, 2021
    Publication date: July 29, 2021
    Applicant: STMicroelectronics S.r.l.
    Inventors: Enri DUQI, Nicolo' BONI, Lorenzo BALDO, Massimiliano MERLI, Roberto CARMINATI
  • Patent number: 11054327
    Abstract: A microelectromechanical pressure sensor includes a monolithic body of semiconductor material having a front surface. A sensing structure is integrated in the monolithic body and has a buried cavity completely contained within the monolithic body at the front surface. A sensing membrane is suspended above the buried cavity and is formed by a surface portion of the monolithic body. Sensing elements of a piezoresistive type are arranged in the sensing membrane to detect a deformation of the sensing membrane as a result of a pressure. The pressure sensor is further provided with a self-test structure integrated within the monolithic body to cause application of a testing deformation of the sensing membrane in order to verify proper operation of the sensing structure.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 6, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Enri Duqi, Lorenzo Baldo
  • Publication number: 20210147222
    Abstract: An integrated device includes: a first die; a second die coupled in a stacked way on the first die along a vertical axis; a coupling region arranged between facing surfaces of the first die and of the second die, which face one another along the vertical axis and lie in a horizontal plane orthogonal to the vertical axis, for mechanical coupling of the first and second dies; electrical-contact elements carried by the facing surfaces of the first and second dies, aligned in pairs along the vertical axis; and conductive regions arranged between the pairs of electrical-contact elements carried by the facing surfaces of the first and second dies, for their electrical coupling. Supporting elements are arranged at the facing surface of at least one of the first and second dies and elastically support respective electrical-contact elements.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Enri DUQI, Lorenzo BALDO, Domenico GIUSTI
  • Publication number: 20210114867
    Abstract: A MEMS switch is actuatable by a fluid, and includes a piezoelectric pressure sensor that detects the movement of a fluid generating a negative pressure. The piezoelectric pressure sensor is formed by a chip of semiconductor material having a through cavity and a sensitive membrane, which extends over the through cavity and has a first and a second surface. The piezoelectric pressure sensor is mounted on a face of a board having a through hole so that the through cavity overlies and is in fluid connection with the through hole. The board has a fixing structure, which enables securing in an opening of a partition wall separating a first and a second space from each other. The board is arranged so that the first surface of the sensitive membrane faces the first space, and the second surface of the sensitive membrane faces the second space.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Enri DUQI, Fabrizio CERINI, Lorenzo BALDO
  • Publication number: 20210095949
    Abstract: A button device includes a MEMS sensor having a MEMS strain detection structure and a deformable substrate configured to undergo deformation under the action of an external force. The MEMS strain detection structure includes a mobile element carried by the deformable substrate via at least a first and a second anchorage, the latter fixed with respect to the deformable substrate and configured to displace and generate a deformation force on the mobile element in the presence of the external force; and stator elements capacitively coupled to the mobile element. The deformation of the mobile element causes a capacitance variation between the mobile element and the stator elements. Furthermore, the MEMS sensor is configured to generate detection signals correlated to the capacitance variation.
    Type: Application
    Filed: September 18, 2020
    Publication date: April 1, 2021
    Inventors: Gabriele GATTERE, Carlo VALZASINA, Enri DUQI
  • Patent number: 10962431
    Abstract: A pressure sensor designed to detect a value of ambient pressure of the environment external to the pressure sensor includes: a first substrate having a buried cavity and a membrane suspended over the buried cavity; a second substrate having a recess, hermetically coupled to the first substrate so that the recess defines a sealed cavity the internal pressure value of which provides a pressure-reference value; and a channel formed at least in part in the first substrate and configured to arrange the buried cavity in communication with the environment external to the pressure sensor. The membrane undergoes deflection as a function of a difference of pressure between the pressure-reference value in the sealed cavity and the ambient-pressure value in the buried cavity.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 30, 2021
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Enri Duqi, Sebastiano Conti, Sonia Costantini
  • Patent number: 10961117
    Abstract: A process for manufacturing a microelectromechanical device envisages: providing a wafer of semiconductor material; forming a buried cavity, completely contained within the wafer, and a structural layer formed by a surface portion of the wafer and suspended over the buried cavity; forming first trenches through the structural layer as far as the buried cavity, which define the suspended structure in the structural layer; filling the first trenches and the buried cavity with sacrificial material; forming a closing structure above the structural layer; removing the sacrificial material from the first trenches and from the buried cavity to release the suspended structure, the suspended structure being isolated and buried within the wafer in a buried environment formed by the first trenches and by the buried cavity.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: March 30, 2021
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Enri Duqi, Lorenzo Baldo, Flavio Francesco Villa, Gabriele Barlocchi
  • Patent number: 10906801
    Abstract: An integrated device includes: a first die; a second die coupled in a stacked way on the first die along a vertical axis; a coupling region arranged between facing surfaces of the first die and of the second die, which face one another along the vertical axis and lie in a horizontal plane orthogonal to the vertical axis, for mechanical coupling of the first and second dies; electrical-contact elements carried by the facing surfaces of the first and second dies, aligned in pairs along the vertical axis; and conductive regions arranged between the pairs of electrical-contact elements carried by the facing surfaces of the first and second dies, for their electrical coupling. Supporting elements are arranged at the facing surface of at least one of the first and second dies and elastically support respective electrical-contact elements.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: February 2, 2021
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Enri Duqi, Lorenzo Baldo, Domenico Giusti
  • Publication number: 20200363629
    Abstract: A MEMS micromirror device includes a monolithic body of semiconductor material having a first main surface and a second main surface, with the monolithic body having an opening extending from the second main surface and including a suspended membrane of monocrystalline semiconductor material extending between the opening and the first main surface of the monolithic body. The suspended membrane includes a supporting frame and a mobile mass carried by the supporting frame and rotatable about an axis parallel to the first main surface, with the mobile mass having a width less than a width of the opening. A reflecting region extends over the mobile mass.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Applicant: STMicroelectronics S.r.l.
    Inventors: Enri DUQI, Lorenzo BALDO, Roberto CARMINATI, Flavio Francesco VILLA
  • Patent number: 10809140
    Abstract: A pressure sensor designed to detect a value of ambient pressure of the environment external to the pressure sensor includes: a first substrate having a buried cavity and a membrane suspended over the buried cavity; a second substrate having a recess, hermetically coupled to the first substrate so that the recess defines a sealed cavity the internal pressure value of which provides a pressure-reference value; and a channel formed at least in part in the first substrate and configured to arrange the buried cavity in communication with the environment external to the pressure sensor. The membrane undergoes deflection as a function of a difference of pressure between the pressure-reference value in the sealed cavity and the ambient-pressure value in the buried cavity.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 20, 2020
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Enri Duqi, Sebastiano Conti, Sonia Costantini
  • Publication number: 20200326010
    Abstract: A microfluidic valve formed in a body having a first and a second surface; an inlet channel extending in the body from the second surface; a first transverse channel extending in the body in a transverse direction with respect to the inlet channel; and an outlet channel extending in the body from the first surface. The inlet channel, the first transverse channel and the outlet channel form a fluidic path. The microfluidic valve further has an occluding portion, formed by the body and extending over the transverse channel; and a piezoelectric actuator coupled to the occluding portion and configured to move the occluding portion from an opening position of the valve, where the occluding portion does not interfere with the fluidic path, and a closing position of the valve, where the occluding portion interferes with and interrupts the fluidic path.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 15, 2020
    Inventors: Enri DUQI, Lorenzo BALDO