Patents by Inventor Enrico Petrucco

Enrico Petrucco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230178795
    Abstract: A method of preparing a lithium lanthanum zirconate (LLZO) cubic garnet material is provided which comprises the following steps: (a) milling a slurry comprising one or more precursor compounds in an aqueous medium, wherein the one or more precursor compounds comprise lithium, lanthanum, zirconium and optionally one or more dopant elements, to provide a milled slurry; (b) spray drying the milled slurry to provide a spray-dried powder; and (c) annealing the spray-dried powder. The resultant LLZO cubic garnet material may be used as a lithium ion conductive solid electrolyte in secondary lithium-ion batteries.
    Type: Application
    Filed: May 6, 2021
    Publication date: June 8, 2023
    Inventors: Christopher John NUTTALL, Enrico PETRUCCO
  • Publication number: 20210143443
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Inventors: Rachel Louise O'Malley, Enrico Petrucco
  • Patent number: 10938038
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: March 2, 2021
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Rachel Louise O'Malley, Enrico Petrucco
  • Patent number: 10615423
    Abstract: A catalyst comprising particles of iridium oxide and a metal oxide (M oxide), wherein the metal oxide is selected from the group consisting of a Group 4 metal oxide, a Group 5 metal oxide, a Group 7 metal oxide and antimony oxide, wherein the catalyst is prepared by subjecting a precursor mixture to flame spray pyrolysis, wherein the precursor mixture comprises a solvent, an iridium oxide precursor and a metal oxide precursor is disclosed. The catalyst has particular use in catalysing the oxygen evolution reaction.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: April 7, 2020
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Rachel Louise O'Malley, Enrico Petrucco, Simon Johnson
  • Publication number: 20190221857
    Abstract: A catalyst layer comprising an electrocatalyst and an oxygen evolution catalyst, wherein the oxygen evolution catalyst comprises a crystalline metal oxide comprising: (i) one of more first metals selected from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, magnesium, calcium, strontium, barium, sodium, potassium, indium, thallium, tin, lead, antimony and bismuth; (ii) one or more second metals selected from the group consisting of Ru, Ir, Os and Rh; and (iii) oxygen characterised in that: (a) the atomic ratio of first metal(s):second metal(s) is from 1:1.5 to 1.5:1 (b) the atomic ratio of (first metal(s)+second metal(s)):oxygen is from 1:1 to 1:2 is disclosed.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: David Thompsett, Edward Anthony Wright, Janet Mary Fisher, Enrico Petrucco
  • Patent number: 10297836
    Abstract: A catalyst layer including an electrocatalyst and an oxygen evolution catalyst, wherein the oxygen evolution catalyst includes a crystalline metal oxide including: (i) one of more first metals selected from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, magnesium, calcium, strontium, barium, sodium, potassium, indium, thallium, tin, lead, antimony and bismuth; (ii) one or more second metals selected from the group consisting of Ru, Ir, Os and Rh; and (iii) oxygen characterized in that: (a) the atomic ratio of first metal(s):second metal(s) is from 1:1.5 to 1.5:1 (b) the atomic ratio of (first metal(s)+second metal(s)):oxygen is from 1:1 to 1:2 is disclosed.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 21, 2019
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: David Thompsett, Edward Anthony Wright, Janet Mary Fisher, Enrico Petrucco
  • Publication number: 20180145338
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Inventors: Rachel Louise O'Malley, Enrico Petrucco
  • Patent number: 9947939
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: April 17, 2018
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Rachel Louise O'Malley, Enrico Petrucco
  • Patent number: 9947938
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of Nb and Ta, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum in the anode catalyst layer is from 0.01 to 0.2 mgPt/cm2.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: April 17, 2018
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Rachel Louise O'Malley, Enrico Petrucco
  • Publication number: 20170244109
    Abstract: A catalyst comprising particles of iridium oxide and a metal oxide (M oxide), wherein the metal oxide is selected from the group consisting of a Group 4 metal oxide, a Group 5 metal oxide, a Group 7 metal oxide and antimony oxide, wherein the catalyst is prepared by subjecting a precursor mixture to flame spray pyrolysis, wherein the precursor mixture comprises a solvent, an iridium oxide precursor and a metal oxide precursor is disclosed. The catalyst has particular use in catalysing the oxygen evolution reaction.
    Type: Application
    Filed: September 8, 2015
    Publication date: August 24, 2017
    Applicant: Johnson Matthey Fuel Cells Limited
    Inventors: Rachel Louise O'MALLEY, Enrico PETRUCCO, Simon JOHNSON
  • Publication number: 20160126561
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of Ti, V and Cr, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum in the anode catalyst layer is from 0.01 to 0.2 mgPt/cm2.
    Type: Application
    Filed: January 29, 2014
    Publication date: May 5, 2016
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Rachel Louise O'MALLEY, Enrico PETRUCCO
  • Publication number: 20160006041
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of Nb and Ta, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum in the anode catalyst layer is from 0.01 to 0.2 mgPt/cm2.
    Type: Application
    Filed: January 29, 2014
    Publication date: January 7, 2016
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Rachel Louise O'MALLEY, Enrico PETRUCCO
  • Publication number: 20150372315
    Abstract: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 24, 2015
    Inventors: Rachel Louise O'MALLEY, Enrico PETRUCCO
  • Publication number: 20130330651
    Abstract: A catalyst layer including an electrocatalyst and an oxygen evolution catalyst, wherein the oxygen evolution catalyst includes a crystalline metal oxide including: (i) one of more first metals selected from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, magnesium, calcium, strontium, barium, sodium, potassium, indium, thallium, tin, lead, antimony and bismuth; (ii) one or more second metals selected from the group consisting of Ru, Ir, Os and Rh; and (iii) oxygen characterised in that: (a) the atomic ratio of first metal(s):second metal(s) is from 1:1.5 to 1.5:1 (b) the atomic ratio of (first metal(s)+second metal(s)):oxygen is from 1:1 to 1:2 is disclosed.
    Type: Application
    Filed: December 14, 2011
    Publication date: December 12, 2013
    Applicant: Johnson Matthey Fuel Cells Limited
    Inventors: David Thompsett, Edward Anthony Wright, Janet Mary Fisher, Enrico Petrucco