Patents by Inventor Ephraim Greenfield

Ephraim Greenfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230375418
    Abstract: The present application discloses an improved thermopile laser sensor apparatus and methods of use. In one embodiment, the apparatus includes a sensor body having a first sensor body recess and a second sensor body recess formed therein, with a substrate positioned in the first sensor body recess in thermal communication with the sensor body. The substrate includes at least one absorber attached thereto and configured to absorb a portion of a beam of laser energy. A first thermal sensor in thermal communication with the substrate and the sensor body may be formed on or attached to the substrate. A second thermal sensor in thermal communication with the sensor body may be positioned in the second sensor body recess. A thermal barrier configured to reduce the rate of transfer of thermal energy from the substrate to the second thermal sensor may be positioned between the substrate and the second thermal sensor.
    Type: Application
    Filed: September 28, 2021
    Publication date: November 23, 2023
    Applicant: Ophir Optronics Solutions Ltd.
    Inventors: Ephraim GREENFIELD, Julian MARSDEN, Ephraim ROTEM
  • Patent number: 9494471
    Abstract: A power measuring sensor for an optical beam which utilizes the temperature difference across a thin layer of heat insulating material, generated by the axial flow of the absorbed beam, from an absorber layer on which the beam impinges, to a cooled heat sink which dissipates the heat after passage through the sensor. The axial heat flow is measured by means of a continuous matrix of adjacent thermocouple junctions over the heat flow region of the sensor disc, with the thermal insulating layer, which generates the temperature drop, having thicker and thinner regions at alternate junctions. The junctions on the thicker regions of the insulator thus become the hot junctions, and those on the thinner regions of the insulating layer become the cold junctions, and the sum of the voltages generated by the thermocouples is proportional to the flow of heat, and thus to the incident optical power.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 15, 2016
    Assignee: OPHIR OPTRONICS SOLUTIONS LTD.
    Inventors: Ephraim Greenfield, Eliyahu Bender, Shimon Elstein
  • Publication number: 20130250997
    Abstract: A power measuring sensor for an optical beam which utilizes the temperature difference across a thin layer of heat insulating material, generated by the axial flow of the absorbed beam, from an absorber layer on which the beam impinges, to a cooled heat sink which dissipates the heat after passage through the sensor. The axial heat flow is measured by means of a continuous matrix of adjacent thermocouple junctions over the heat flow region of the sensor disc, with the thermal insulating layer, which generates the temperature drop, having thicker and thinner regions at alternate junctions. The junctions on the thicker regions of the insulator thus become the hot junctions, and those on the thinner regions of the insulating layer become the cold junctions, and the sum of the voltages generated by the thermocouples is proportional to the flow of heat, and thus to the incident optical power.
    Type: Application
    Filed: November 29, 2011
    Publication date: September 26, 2013
    Applicant: OPHIR OPTRONICS SOLUTIONS LTD.
    Inventors: Ephraim Greenfield, Eliyahu Bender, Shimon Elstein
  • Patent number: 7154077
    Abstract: Devices and methods for measurement of energy from a defined source having increased accuracy in measuring low energies. The device comprises a housing containing sensors. A first sensor receives energy from the source and produces a first output. A second sensor receives ambient energy only and produces a second output. Subtraction of the second output from the first output produces a more accurate corrected output. The method includes providing a housing containing a first sensor and a second sensor and directing energy from the defined source to a surface of the first sensor thereby causing the first sensor to produce a first output while only ambient energy from sources other than the defined source is applied to a surface of the second sensor which produce a second output that is subtracted from the first output producing a corrected output.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: December 26, 2006
    Assignee: Ophir Optronics Ltd.
    Inventors: Efraim Miklatzky, Ephraim Greenfield
  • Publication number: 20050180487
    Abstract: Devices and methods for measurement of energy from a defined source having increased accuracy in measuring low energies. The device comprises a housing containing sensors. A first sensor receives energy from the source and produces a first output. A second sensor receives ambient energy only and produces a second output. Subtraction of the second output from the first output produces a more accurate corrected output. The method includes providing a housing containing a first sensor and a second sensor and directing energy from the defined source to a surface of the first sensor thereby causing the first sensor to produce a first output while only ambient energy from sources other than the defined source is applied to a surface of the second sensor which produce a second output that is subtracted from the first output producing a corrected output.
    Type: Application
    Filed: October 25, 2004
    Publication date: August 18, 2005
    Inventors: Ephraim Greenfield, Efraim Miklatzky
  • Patent number: 5376783
    Abstract: A technique for performing background suppression in photodiode detectors is disclosed. A first detector measures the light emitted by the source to be measured and the background light, while a second detector simultaneously measures the background light only. The value measured by the second detector is subtracted from the value measured by the first detector, and the difference represents the portion of the first detector's measured value which is attributable to the source to be measured.
    Type: Grant
    Filed: April 24, 1994
    Date of Patent: December 27, 1994
    Assignee: Ophir Optronics Ltd.
    Inventors: Jacob J. Vecht, Ben-Zion Halperin, Ephraim Greenfield
  • Patent number: 5114228
    Abstract: Apparatus for determining the energy of single pulses of rapidly pulsing laser radiation including first radiation sensing apparatus for providing a first signal output in response to single pulses of a plurality of pulses of rapidly pulsing radiation; second radiation sensing apparatus for providing a second signal output in response to a plurality of pulses of rapidly pulsing radiation, the second signal output being an indication of the overall average incident optical power of the plurality of pulses; and signal processing apparatus, associated with the first and second radiation sensing apparatus, for receiving and processing the first and second signal outputs so as to determine an average pulse rate of the plurality of pulses and thereby also to provide an output indication of the energy of single pulses of the plurality of pulses of rapidly pulsing radiation.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: May 19, 1992
    Assignee: Ophir-Aryt Optronics, Ltd.
    Inventors: Ephraim Greenfield, Jacob J. Vecht