Patents by Inventor Ephraim R. Lanford

Ephraim R. Lanford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220413516
    Abstract: Embodiments disclosed herein enable routine autonomous execution of at least some major phases of aerostat operation in response to commands from human or automated external operators, a built-in decision-making capacity, or both. Various embodiments combine one or more actively controlled tethers, aerodynamic aerostat control surfaces, mechanical assistive devices (e.g., jointed arms attached to a ground station), and/or active propulsors attached to the aerostat to govern aerostat behavior during launch, flight, and landing phases of operation. Some embodiments enable automatic autonomous performance of all phases of routine post-commissioning aerostat operation, including launch, flight, and landing, without any routine need for availability of a human crew.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Applicant: Altaeros Energies, Inc.
    Inventors: Benjamin William Glass, Benjamin Ryan Bollinger, Igor Braverman, Peter Carleton Mitton, JR., Ephraim R. Lanford
  • Patent number: 11429116
    Abstract: Embodiments disclosed herein enable routine autonomous execution of at least some major phases of aerostat operation in response to commands from human or automated external operators, a built-in decision-making capacity, or both. Various embodiments combine one or more actively controlled tethers, aerodynamic aerostat control surfaces, mechanical assistive devices (e.g., jointed arms attached to a ground station), and/or active propulsors attached to the aerostat to govern aerostat behavior during launch, flight, and landing phases of operation. Some embodiments enable automatic autonomous performance of all phases of routine post-commissioning aerostat operation, including launch, flight, and landing, without any routine need for availability of a human crew.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 30, 2022
    Assignee: Altaeros Energies, Inc.
    Inventors: Benjamin William Glass, Benjamin Ryan Bollinger, Igor Braverman, Peter Carleton Mitton, Jr., Ephraim R. Lanford
  • Publication number: 20200057455
    Abstract: Embodiments disclosed herein enable routine autonomous execution of at least some major phases of aerostat operation in response to commands from human or automated external operators, a built-in decision-making capacity, or both. Various embodiments combine one or more actively controlled tethers, aerodynamic aerostat control surfaces, mechanical assistive devices (e.g., jointed arms attached to a ground station), and/or active propulsors attached to the aerostat to govern aerostat behavior during launch, flight, and landing phases of operation. Some embodiments enable automatic autonomous performance of all phases of routine post-commissioning aerostat operation, including launch, flight, and landing, without any routine need for availability of a human crew.
    Type: Application
    Filed: October 18, 2017
    Publication date: February 20, 2020
    Applicant: Altaeros Energies, Inc.
    Inventors: Benjamin William Glass, Benjamin Ryan Bollinger, Igor Braverman, Peter Carleton Mitton, Ephraim R. Lanford
  • Patent number: 9789947
    Abstract: An aerostat system with an extended flight envelope in which the aerostat system can safely operate is provided. The aerostat system includes an aerostat, multiple tether groups and a base station. Spatially distinct tether groups allow for improved stability and controllability over a wide range of wind conditions. Independent actuation of the tether groups allows for control of the aerostat pitch and roll angle. A rotating platform including rails to rest the aerostat allows docking without auxiliary tethers, minimizing or eliminating the ground crew required to dock traditional aerostat systems. An optional controller allows remote or autonomous operation of the aerostat system.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: October 17, 2017
    Assignee: Altaeros Energies, Inc.
    Inventors: Benjamin W. Glass, Christopher R. Vermillion, Ephraim R. Lanford
  • Publication number: 20150083849
    Abstract: The invention provides an improved aerostat system including an aerostat, multiple tether groups and a base station. Spatially distinct tether groups allow for improved stability and controllability over a wide range of wind conditions. Independent actuation of the tether groups allows for control of the aerostat pitch and roll angle. A rotating platform including rails to rest the aerostat allows docking without auxiliary tethers, minimizing or eliminating the ground crew required to dock traditional aerostat systems. An optional controller allows remote or autonomous operation of the aerostat system. The invention is intended to extend the flight envelope in which aerostat systems can safely operate.
    Type: Application
    Filed: January 17, 2013
    Publication date: March 26, 2015
    Inventors: Benjamin W. Glass, Christopher R. Vermillion, Ephraim R. Lanford