Patents by Inventor Eran Linder

Eran Linder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957592
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: April 16, 2024
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 11903837
    Abstract: A two-part joint replacement device for replacing damaged soft joint tissue, such as a meniscus or cartilage tissue. In one form, the device may include a free floating soft joint tissue replacement component comprising a first tissue-interface surface shaped to engage a first anatomical (bone and/or cartilage) structure of a joint having damaged soft tissue. The device may also include a free floating rigid base component comprising a second tissue-interface surface shaped to engage a second anatomical (bone and/or cartilage) structure of the joint. The free floating soft joint tissue replacement component may be shaped to slidably interface with the rigid base component. In another form, the free floating soft joint tissue replacement component and the rigid base component are fixed together.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: February 20, 2024
    Inventors: Eran Linder-Ganz, Jonathan J. Elsner, Henry A. Klyce
  • Publication number: 20230277326
    Abstract: A meniscus replacement device for replacing damaged soft tissue at a host knee includes a first component comprising a first tissue-interface surface shaped to free-floatingly interface with tissue structure of one of a femur and a tibia in a knee joint having a damaged soft tissue, and comprises a second component comprising a second tissue-interface surface shaped to free-floatingly interface with a second tissue structure of the other of the femur and the tibia in the knee joint. The second component may include a containment cavity receiving at least a portion of the first component. In another form, the free floating soft joint tissue replacement component and the base component are fixed together. In some aspects, the second tissue-interface surface is shaped to fit contours of a natural tibia plateau. In some aspects, the first tissue-interface surface is shaped to fit contours of a femoral surface.
    Type: Application
    Filed: November 7, 2022
    Publication date: September 7, 2023
    Inventors: Jonathan J. Elsner, Eran Linder-Ganz, Henry A. Klyce
  • Publication number: 20230248528
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Application
    Filed: September 12, 2022
    Publication date: August 10, 2023
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 11660020
    Abstract: A gas analyzing module includes a first connector, which includes a connection detection mechanism (CDM), and is connectable to a gas sampling line via a second connector. The gas analyzing module also includes a pump, a pressure sensor and a controller. The controller controls operation of the pump and receives a signal from the CDM. When the pump is on/active, the controller measures the CDM output signal, and if the CDM output signal indicates misconnection between the first connector and the second connector, the controller switches the pump off only if a pressure measured in the gas sampling line corroborates the CDM's misconnection indication, or, if the measured pressure refutes the CDM's misconnection indication, the controller maintains the pump's on state. The gas analyzing module may be a capnography module configured for capnography. Also provided is a gas analyzing system that includes the gas analyzing module and a gas analyzer.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 30, 2023
    Assignee: ORIDION MEDICAL 1987 LTD
    Inventors: Gal Itzhak, Yosef Hay Cohen, Eran Linder, Avraham Turak
  • Patent number: 11491017
    Abstract: A meniscus replacement device for replacing damaged soft tissue at a host knee includes a first component comprising a first tissue-interface surface shaped to free-floatingly interface with tissue structure of one of a femur and a tibia in a knee joint having a damaged soft tissue, and comprises a second component comprising a second tissue-interface surface shaped to free-floatingly interface with a second tissue structure of the other of the femur and the tibia in the knee joint. The second component may include a containment cavity receiving at least a portion of the first component. In another form, the free floating soft joint tissue replacement component and the base component are fixed together. In some aspects, the second tissue-interface surface is shaped to fit contours of a natural tibia plateau. In some aspects, the first tissue-interface surface is shaped to fit contours of a femoral surface.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 8, 2022
    Assignee: Active Implants LLC
    Inventors: Jonathan J. Elsner, Eran Linder-Ganz, Henry A. Klyce
  • Patent number: 11439510
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: September 13, 2022
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Publication number: 20220183850
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Application
    Filed: September 28, 2021
    Publication date: June 16, 2022
    Inventors: Eran Linder-Ganz, Avraham Shterling, Noam Weissberg
  • Patent number: 11129722
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 28, 2021
    Assignee: ACTIVE IMPLANTS LLC
    Inventors: Eran Linder-Ganz, Avraham Shterling, Noam Weissberg
  • Publication number: 20210282936
    Abstract: A two-part joint replacement device for replacing damaged soft joint tissue, such as a meniscus or cartilage tissue. In one form, the device may include a free floating soft joint tissue replacement component comprising a first tissue-interface surface shaped to engage a first anatomical (bone and/or cartilage) structure of a joint having damaged soft tissue. The device may also include a free floating rigid base component comprising a second tissue-interface surface shaped to engage a second anatomical (bone and/or cartilage) structure of the joint. The free floating soft joint tissue replacement component may be shaped to slidably interface with the rigid base component. In another form, the free floating soft joint tissue replacement component and the rigid base component are fixed together.
    Type: Application
    Filed: November 12, 2020
    Publication date: September 16, 2021
    Inventors: Eran Linder-Ganz, Jonathan J. Elsner, Henry A. Klyce
  • Publication number: 20210177613
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. In some instances, the during-implantation selection method includes monitoring loads and/or pressures applied to the prosthetic device and/or the adjacent anatomy. In some instances, the loads and/or pressures are monitored by a trial prosthetic device comprising one or more sensors. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Application
    Filed: August 28, 2020
    Publication date: June 17, 2021
    Inventors: Eran Linder-Ganz, Jacob Jonathan Elsner, Avraham Shterling
  • Publication number: 20210113342
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Application
    Filed: July 31, 2020
    Publication date: April 22, 2021
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Patent number: 10835381
    Abstract: A two-part joint replacement device for replacing damaged soft joint tissue, such as a meniscus or cartilage tissue. In one form, the device may include a free floating soft joint tissue replacement component comprising a first tissue-interface surface shaped to engage a first anatomical (bone and/or cartilage) structure of a joint having damaged soft tissue. The device may also include a free floating rigid base component comprising a second tissue-interface surface shaped to engage a second anatomical (bone and/or cartilage) structure of the joint. The free floating soft joint tissue replacement component may be shaped to slidably interface with the rigid base component. In another form, the free floating soft joint tissue replacement component and the rigid base component are fixed together.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: November 17, 2020
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Jonathan J. Elsner, Henry A. Klyce
  • Patent number: 10758358
    Abstract: Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. In some instances, the during-implantation selection method includes monitoring loads and/or pressures applied to the prosthetic device and/or the adjacent anatomy. In some instances, the loads and/or pressures are monitored by a trial prosthetic device comprising one or more sensors. Methods of implanting meniscus prosthetic devices are also disclosed.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: September 1, 2020
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Jacob Jonathan Elsner, Avraham Shterling
  • Patent number: 10758359
    Abstract: A prosthetic system for use as a partial unicompartmental artificial knee replacement system. In one form, an artificial femoral bearing component is implanted along with a floating meniscus component that is configured to cooperate with the femoral bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles. In another form, an artificial tibial bearing component is implanted along with a floating meniscus component that is configured to cooperate with the tibial bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: September 1, 2020
    Assignee: Active Implants LLC
    Inventors: Emanuele Nocco, Eran Linder-Ganz
  • Patent number: 10736749
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores stress distribution, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device includes an anti-migration feature that inhibits extreme movement within the joint while permitting free floating over a significant range. In one aspect, the anti-migration feature is an enlarged anterior structure or a posterior meniscus remnant engaging channel while in another aspect, the anti-migration feature includes a tethering member. Still further, removable radiopaque features are provided to enhance trialing of the implant prior to final implantation within the joint.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: August 11, 2020
    Assignee: Active Implants LLC
    Inventors: Eran Linder-Ganz, Lex R. Giltaij, Richard W. Treharne, Thomas B. Buford, Dvora Galli
  • Publication number: 20200229933
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores shock absorption, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device is pre-tensioned to improve the fit of the prosthetic device within the knee joint and, thereby, maximize the contact area of the load-bearing surfaces to distribute loading through the prosthetic device in a manner substantially similar to that of a healthy natural meniscus. In some embodiments, the pre-tensioned prosthetic device is smaller, or scaled-down, relative to the size of a healthy natural meniscus.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 23, 2020
    Inventors: Eran Linder-Ganz, Avraham Shterling, Amir Danino
  • Patent number: 10543096
    Abstract: A prosthetic device for use as an artificial meniscus is disclosed. The prosthetic device restores shock absorption, stability, and function to the knee joint after removal of the damaged natural meniscus. In some embodiments, the prosthetic device is pre-tensioned to improve the fit of the prosthetic device within the knee joint and, thereby, maximize the contact area of the load-bearing surfaces to distribute loading through the prosthetic device in a manner substantially similar to that of a healthy natural meniscus. In some embodiments, the pre-tensioned prosthetic device is smaller, or scaled-down, relative to the size of a healthy natural meniscus.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: January 28, 2020
    Assignee: Active Implants Corporation
    Inventors: Eran Linder-Ganz, Avraham Shterling, Amir Danino
  • Publication number: 20200022619
    Abstract: A gas analyzing module includes a first connector, which includes a connection detection mechanism (CDM), and is connectable to a gas sampling line via a second connector. The gas analyzing module also includes a pump, a pressure sensor and a controller. The controller controls operation of the pump and receives a signal from the CDM. When the pump is on/active, the controller measures the CDM output signal, and if the CDM output signal indicates misconnection between the first connector and the second connector, the controller switches the pump off only if a pressure measured in the gas sampling line corroborates the CDM's misconnection indication, or, if the measured pressure refutes the CDM's misconnection indication, the controller maintains the pump's on state. The gas analyzing module may be a capnography module configured for capnography. Also provided is a gas analyzing system that includes the gas analyzing module and a gas analyzer.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 23, 2020
    Inventors: Gal Itzhak, Yosef Hay Cohen, Eran Linder, Avraham Turak
  • Publication number: 20190254831
    Abstract: A prosthetic system for use as a partial unicompartmental artificial knee replacement system. In one form, an artificial femoral bearing component is implanted along with a floating meniscus component that is configured to cooperate with the femoral bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles. In another form, an artificial tibial bearing component is implanted along with a floating meniscus component that is configured to cooperate with the tibial bearing component to move through a plurality of translational and rotational positions as the knee rotates through a variety of angles.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Emanuele Nocco, Eran Linder-Ganz