Patents by Inventor Eren Sasoglu

Eren Sasoglu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10924303
    Abstract: A secure training sequence (STS) is included in wireless packets communicated between electronic devices to assist with channel estimation and wireless ranging. The STS includes multiple STS segments generated based on outputs from a cryptographically secure pseudo-random number generator (CSPRNG), the STS segments being separated by guard intervals and formatted in accordance with an 802.15.4 data symbol format that uses burst position modulation (BPM) and binary phase shift keying (BPSK) to map bits from the CSPRNG to burst positions and pulse polarities for the STS symbols. Both a first electronic device, which generates the STS, and a second electronic device, which estimates a communication channel using the STS, have prior private knowledge of cryptographic keys required to generate a non-repetitive single-use pseudo-random (PR) sequence by the CSPRNG. The STS includes two burst position intervals per STS symbol and two possible burst positions within each burst position interval.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Anuj Batra, Joachim S. Hammerschmidt, Eren Sasoglu
  • Patent number: 10911071
    Abstract: The present disclosure includes systems and methods for supporting polar codewords with variable polar codeword lengths. Variable codeword length codewords are communicated using an n-bit encoder/n-bit decoder having n inputs and n corresponding outputs. Each input and each corresponding output is associated with a bit index. A set of bit indices to be shortened are selected. The encoder encodes n input bits to obtain n output bits. Each output bit that is associated with a bit index from the set of bit indices to be shortened is ignored. A codeword is generated from all of the remaining output bits.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Eren Sasoglu, Wook Bong Lee
  • Patent number: 10887863
    Abstract: Some embodiments include an apparatus, method, and computer program product for secure time-of-arrivals calculations in an ultra-wideband (UWB) system. Some embodiments include a UWB receiver that can inspect a channel impulse response (CIR) between a first and second electronic device and identify one or more first path candidates (FPCs). For a candidate path, the UWB receiver can identify subsequent paths that create inter-pulse interference (IPI) on the candidate path. Using estimates for the interfering path strengths (e.g., channel coefficients from the CIR) and the known cryptographically sequence of pulse polarities (SPP), the UWB receiver can reduce the IPI from these interfering paths on the FPCs, and then make decisions based at least on the remaining pulse polarities, whether the one or more FPCs comprise a legitimate transmission signal.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: January 5, 2021
    Assignee: Apple Inc.
    Inventors: Eren Sasoglu, Joachim S. Hammerschmidt
  • Publication number: 20200280952
    Abstract: Some embodiments include an apparatus, method, and computer program product for secure time-of-arrivals calculations in an ultra-wideband (UWB) system. Some embodiments include a UWB receiver that can inspect a channel impulse response (CIR) between a first and second electronic device and identify one or more first path candidates (FPCs). For a candidate path, the UWB receiver can identify subsequent paths that create inter-pulse interference (IPI) on the candidate path. Using estimates for the interfering path strengths (e.g., channel coefficients from the CIR) and the known cryptographically sequence of pulse polarities (SPP), the UWB receiver can reduce the IPI from these interfering paths on the FPCs, and then make decisions based at least on the remaining pulse polarities, whether the one or more FPCs comprise a legitimate transmission signal.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Applicant: Apple Inc.
    Inventors: Eren SASOGLU, Joachim S. HAMMERSCHMIDT
  • Publication number: 20200259522
    Abstract: Some embodiments include a system and method for enabling communicating Ultra Wideband (UWB) devices to collaborate by exchanging pulse shape information. The UWB devices use the pulse shape information to improve ranging accuracy. The improved ranging accuracy can be used in complex multipath environments where advanced estimation schemes are used to extract an arriving path for time-of-flight estimation. To determine the pulse shape information to be shared, some embodiments include determining location information of a UWB device and selecting the pulse shape information that satisfies regional aspects. The pulse shape information includes a time-zero index specific to a ranging signal that is used by UWB receivers to establish timestamps time-of-flight calculations. Some embodiments include measuring performance characteristics and selecting different pulse shape information based on the performance characteristics for improved accuracy.
    Type: Application
    Filed: February 12, 2020
    Publication date: August 13, 2020
    Applicant: Apple Inc.
    Inventors: Joachim S. HAMMERSCHMIDT, Eren SASOGLU
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10567034
    Abstract: Embodiments enable communicating Ultra Wideband (UWB) devices to collaborate by exchanging pulse shape information. The UWB devices use the pulse shape information to improve ranging accuracy. The improved ranging accuracy can be used in complex multipath environments where advanced estimation schemes are used to extract an arriving path for time-of-flight estimation. To determine the pulse shape information to be shared, some embodiments include determining location information of a UWB device and selecting the pulse shape information that satisfies regional aspects. The pulse shape information includes a time-zero index specific to a ranging signal that is used by UWB receivers to establish timestamps time-of-flight calculations. Some embodiments include measuring performance characteristics and selecting different pulse shape information based on the performance characteristics for improved accuracy.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 18, 2020
    Assignee: Apple Inc.
    Inventors: Joachim S. Hammerschmidt, Eren Sasoglu
  • Publication number: 20200014526
    Abstract: Methods and apparatuses are presented to generate, and verify reception of, ultra wideband (UWB) communications, e.g., to perform secure UWB ranging. Verifier and prover messages may be encoded on top of random cryptographically secure training sequence (STS) of pulses, organized in blocks such that a given block corresponds to a given message bit. In some scenarios, a first STS may be encoded using a verifier message not known to a recipient device. A second STS may be received from the recipient device, encoded with an unknown prover message. A third STS may also be received, encoded with an authentication message generated using the verifier message and the authentication message. Verification of the authentication message can therefore confirm that the recipient device received the first STS, and that the recipient device is the authentic source of the second STS. Thus, the second STS may be relied upon, e.g., for ranging calculations.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 9, 2020
    Inventors: Joachim S. Hammerschmidt, Eren Sasoglu
  • Publication number: 20190273636
    Abstract: A secure training sequence (STS) is included in wireless packets communicated between electronic devices to assist with channel estimation and wireless ranging. The STS includes multiple STS segments generated based on outputs from a cryptographically secure pseudo-random number generator (CSPRNG), the STS segments being separated by guard intervals and formatted in accordance with an 802.15.4 data symbol format that uses burst position modulation (BPM) and binary phase shift keying (BPSK) to map bits from the CSPRNG to burst positions and pulse polarities for the STS symbols. Both a first electronic device, which generates the STS, and a second electronic device, which estimates a communication channel using the STS, have prior private knowledge of cryptographic keys required to generate a non-repetitive single-use pseudo-random (PR) sequence by the CSPRNG. The STS includes two burst position intervals per STS symbol and two possible burst positions within each burst position interval.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 5, 2019
    Inventors: Anuj BATRA, Joachim S. HAMMERSCHMIDT, Eren SASOGLU
  • Publication number: 20190199398
    Abstract: Embodiments enable communicating Ultra Wideband (UWB) devices to collaborate by exchanging pulse shape information. The UWB devices use the pulse shape information to improve ranging accuracy. The improved ranging accuracy can be used in complex multipath environments where advanced estimation schemes are used to extract an arriving path for time-of-flight estimation. To determine the pulse shape information to be shared, some embodiments include determining location information of a UWB device and selecting the pulse shape information that satisfies regional aspects. The pulse shape information includes a time-zero index specific to a ranging signal that is used by UWB receivers to establish timestamps time-of-flight calculations. Some embodiments include measuring performance characteristics and selecting different pulse shape information based on the performance characteristics for improved accuracy.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 27, 2019
    Applicant: Apple Inc.
    Inventors: Joachim S. HAMMERSCHMIDT, Eren SASOGLU
  • Patent number: 10334454
    Abstract: A communication device includes an antenna array, and a beamforming controller configured to determine a set of beamforming weights for the antenna array based on a target radiation pattern having a plurality of main fingers, wherein the beamforming controller is configured to, in each of a plurality of iterations identify a search space of beamforming weights for a plurality of elements of the antenna array, and determine, based on contribution of one or more of the plurality of elements of to multiple of the plurality of main fingers, an updated set of beamforming weights in the search space to reduce a difference between an actual radiation pattern and the target radiation pattern, the antenna array configured to transmit or receive radio signals based on the updated set of beamforming weights.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 25, 2019
    Assignee: INTEL CORPORATION
    Inventors: Oner Orhan, Eren Sasoglu, Hosein Nikopour, Shilpa Talwar
  • Publication number: 20190036552
    Abstract: The present disclosure includes systems and methods for supporting polar codewords with variable polar codeword lengths. Variable codeword length codewords are communicated using an n-bit encoder/n-bit decoder having n inputs and n corresponding outputs. Each input and each corresponding output is associated with a bit index. A set of bit indices to be shortened are selected. The encoder encodes n input bits to obtain n output bits. Each output bit that is associated with a bit index from the set of bit indices to be shortened is ignored. A codeword is generated from all of the remaining output bits.
    Type: Application
    Filed: June 13, 2016
    Publication date: January 31, 2019
    Applicant: INTEL CORPORATION
    Inventors: Eren Sasoglu, Wook Bong Lee
  • Publication number: 20190007093
    Abstract: Embodiments enable communicating Ultra Wideband (UWB) devices to collaborate by exchanging pulse shape information. The UWB devices use the pulse shape information to improve ranging accuracy. The improved ranging accuracy can be used in complex multipath environments where advanced estimation schemes are used to extract an arriving path for time-of-flight estimation. To determine the pulse shape information to be shared, some embodiments include determining location information of a UWB device and selecting the pulse shape information that satisfies regional aspects. The pulse shape information includes a time-zero index specific to a ranging signal that is used by UWB receivers to establish timestamps time-of-flight calculations. Some embodiments include measuring performance characteristics and selecting different pulse shape information based on the performance characteristics for improved accuracy.
    Type: Application
    Filed: August 21, 2017
    Publication date: January 3, 2019
    Inventors: Joachim S. HAMMERSCHMIDT, Eren SASOGLU
  • Patent number: 10171129
    Abstract: Embodiments enable communicating Ultra Wideband (UWB) devices to collaborate by exchanging pulse shape information. The UWB devices use the pulse shape information to improve ranging accuracy. The improved ranging accuracy can be used in complex multipath environments where advanced estimation schemes are used to extract an arriving path for time-of-flight estimation. To determine the pulse shape information to be shared, some embodiments include determining location information of a UWB device and selecting the pulse shape information that satisfies regional aspects. The pulse shape information includes a time-zero index specific to a ranging signal that is used by UWB receivers to establish timestamps time-of-flight calculations. Some embodiments include measuring performance characteristics and selecting different pulse shape information based on the performance characteristics for improved accuracy.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 1, 2019
    Assignee: Apple Inc.
    Inventors: Joachim S. Hammerschmidt, Eren Sasoglu
  • Publication number: 20180331740
    Abstract: A communication device includes an antenna array, and a beamforming controller configured to determine a set of beamforming weights for the antenna array based on a target radiation pattern having a plurality of main fingers, wherein the beamforming controller is configured to, in each of a plurality of iterations identify a search space of beamforming weights for a plurality of elements of the antenna array, and determine, based on contribution of one or more of the plurality of elements of to multiple of the plurality of main fingers, an updated set of beamforming weights in the search space to reduce a difference between an actual radiation pattern and the target radiation pattern, the antenna array configured to transmit or receive radio signals based on the updated set of beamforming weights.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 15, 2018
    Inventors: Oner ORHAN, Eren SASOGLU, Hosein NIKOPOUR, Shilpa TALWAR
  • Publication number: 20170294981
    Abstract: The disclosed techniques allow for transmitting a signal stream from a sender to a receiver in an environment including multiple senders and receivers. The technique for the sender decomposes a data stream from the sender into multiple substreams, encodes a substream by a codeword, further superimposes multiple codewords to form a signal stream in an asynchronous manner, and transmits the signal stream to the receiver. A codeword can span over multiple blocks. The receiver receives a first codeword stream from a first sender, receives a second codeword stream from a second sender, the two codeword streams may be received at the same time as one signal, and decodes the first codeword stream and second codeword stream over a sliding window of multiple blocks.
    Type: Application
    Filed: September 29, 2015
    Publication date: October 12, 2017
    Inventors: Young-Han Kim, Lele Wang, Hosung Park, Eren Sasoglu