Patents by Inventor Erez Allouche

Erez Allouche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10087107
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: October 2, 2018
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Publication number: 20170144933
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Application
    Filed: February 2, 2017
    Publication date: May 25, 2017
    Applicant: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Patent number: 9604880
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: March 28, 2017
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Patent number: 9590603
    Abstract: An adaptive UWB radar front-end that can a) automatically tune the pulse width for target type and depth; b) automatically sweep specific area by controlling the timing (delay); and, c) for each steering direction, it can automatically adjusts the power distribution for improving radiation pattern and thus improving signal quality for clutter free imaging.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 7, 2017
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Bryan Cady, Neven Simicevic
  • Patent number: 9464619
    Abstract: The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: October 11, 2016
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Arun P. Jaganathan
  • Publication number: 20160060170
    Abstract: A method of controlling the setting time of a geopolymer by coating aluminosilicate particles with nanoparticles to slow the geopolymerization reaction. The coating effectiveness of the nanoparticles may be enhanced by pretreating the aluminosilicate particles with a layer-by-layer assembly of polyelectrolytes. A geopolymer is formed by mixing about 39% to about 66% by weight aluminosilicate source, about 0% to about 40% by weight sand, about 19% to about 33% by weight of alkali activator solution, and about 1% to about 4% nanoparticles.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Erez Allouche, Yuri Lvov, Carlos Montes, Anupam Joshi
  • Patent number: 9207155
    Abstract: A cured-in-place-pipe (CIPP) liner inspection system used to inspect a resin level in a CIPP liner that has been impregnated with resin using an inspection chamber having an optical sensor. The CIPP liner inspection system is also used to identify zones within an installed CIPP liner having lower mechanical strength due to inadequate distribution of resin using a robotic unit having an optical sensor. The optical sensor measures an optical property, which is used to determine a resin level or a mechanical property based on predetermined correlations between the optical property and the resin level and predetermined correlations between the optical property and the mechanical property.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: December 8, 2015
    Assignee: Louisiana Tech Research Corporation
    Inventors: Erez Allouche, Shaurav Alam
  • Patent number: 9000768
    Abstract: A method of surveying the condition of an underground enclosure including the steps of: (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 7, 2015
    Assignee: Louisiana Tech University Research Foundation; a division of Louisiana Tech University Foundation, Inc.
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Neven Simicevic
  • Patent number: 8952706
    Abstract: A conduit survey apparatus having a carriage capable of movement axially down a conduit. The carrier includes a radio frequency (RF) signal generator and an RF signal detector positioned on the carriage along with a controller controlling the signal generator and signal detector. The carrier further includes a waveguide with an open throat transmitting signals from the signal generator and directing received signals to the signal detector. Finally, the carrier includes a waveguide positioner mounted on the carrier and adapted to selectively engage an interior wall of the conduit, wherein the waveguide guide is connected to the positioner such that the open throat of the waveguide is within about 1 inch of the interior wall when the positioner engages the interior wall.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: February 10, 2015
    Assignee: Louisiana Tech University Research Foundation
    Inventors: Erez Allouche, Arun Prakash Jaganathan
  • Patent number: 8873033
    Abstract: A cured-in-place-pipe (CIPP) liner inspection system used to inspect a resin level in a CIPP liner that has been impregnated with resin using an inspection chamber having an optical sensor. The CIPP liner inspection system is also used to identify zones within an installed CIPP liner having lower mechanical strength due to inadequate distribution of resin using a robotic unit having an optical sensor. The optical sensor measures an optical property, which is used to determine a resin level or a mechanical property based on predetermined correlations between the optical property and the resin level and predetermined correlations between the optical property and the mechanical property.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 28, 2014
    Assignee: Louisiana Tech University Research Foundation a division of Louisiana Tech University Foundation Inc.
    Inventors: Erez Allouche, Shaurav Alam
  • Patent number: 8512468
    Abstract: A geopolymer mortar formed by mixing about 35% to about 45% by weight pozzolanic material, about 35% to about 45% by weight silicon oxide source, about 15% to about 20% by weight alkaline activator solution, and about 0.3% to about 2.5% by weight copper ion source. The pozzolanic material may be fly ash and the silicon oxide source may be sand. The alkaline activator solution may be a sodium hydroxide solution containing sodium silicate. The geopolymer mortar may have a viscosity in the range of about 25,000 to about 50,000 centipoise. The geopolymer mortar may be formed by further mixing one or more additives, such as surfactants, thermal spheres, anti-sagging agents, adhesion primers, or fibers. The geopolymer mortar may be applied as a protective coating on a surface of a structure.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: August 20, 2013
    Assignee: Louisiana Tech University Research Foundation, a division of Louisiana Tech University Foundation, Inc.
    Inventors: Erez Allouche, Carlos Montes
  • Publication number: 20130113646
    Abstract: A method of surveying the condition of an underground enclosure including the steps of: (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
    Type: Application
    Filed: December 3, 2012
    Publication date: May 9, 2013
    Applicant: Louisiana Tech Research Foundation, a Division of Louisiana Tech University Foundation, Inc.
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Neven Simicevic
  • Patent number: 8350570
    Abstract: A method of surveying the condition of an underground enclosure including the steps of (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 8, 2013
    Assignee: Louisiana Tech Research Foundation; a division of Lousiana Tech University Foundation, Inc.
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Neven Simicevic
  • Publication number: 20120280852
    Abstract: A conduit survey apparatus having a carriage capable of movement axially down a conduit. The carrier includes a radio frequency (RF) signal generator and an RF signal detector positioned on the carriage along with a controller controlling the signal generator and signal detector. The carrier further includes a waveguide with an open throat transmitting signals from the signal generator and directing received signals to the signal detector. Finally, the carrier includes a waveguide positioner mounted on the carrier and adapted to selectively engage an interior wall of the conduit, wherein the waveguide guide is connected to the positioner such that the open throat of the waveguide is within about 1 inch of the interior wall when the positioner engages the interior wall.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 8, 2012
    Inventors: Erez Allouche, Arun Prakash Jaganathan
  • Publication number: 20120156381
    Abstract: A geopolymer mortar formed by mixing about 35% to about 45% by weight pozzolanic material, about 35% to about 45% by weight silicon oxide source, about 15% to about 20% by weight alkaline activator solution, and about 0.3% to about 2.5% by weight copper ion source. The pozzolanic material may be fly ash and the silicon oxide source may be sand. The alkaline activator solution may be a sodium hydroxide solution containing sodium silicate. The geopolymer mortar may have a viscosity in the range of about 25,000 to about 50,000 centipoise. The geopolymer mortar may be formed by further mixing one or more additives, such as surfactants, thermal spheres, anti-sagging agents, adhesion primers, or fibers. The geopolymer mortar may be applied as a protective coating on a surface of a structure.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Inventors: Erez Allouche, Carlos Montes
  • Publication number: 20100237871
    Abstract: A method of surveying the condition of an underground enclosure including the steps of (a) positioning at least one transmitter/receiver unit (including an antenna) within an underground, substantially nonconductive enclosure, such that a substantial air gap exists between the antenna and the inner wall of the enclosure; (b) transmitting an ultra wideband (UWB) signal toward at least a portion of the inner wall; and (c) processing the return signal in order to identify the interface between the soil and a region of conductivity different from the soil.
    Type: Application
    Filed: August 29, 2008
    Publication date: September 23, 2010
    Inventors: Erez Allouche, Arun Prakash Jaganathan, Neven Simicevic
  • Patent number: 6918618
    Abstract: The present invention relates to a PVC-pipe, axially-tensioned joint. The pipe joint comprises a first PVC pipe having a spigot end, wherein the spigot end has a circumferential groove in and circumferentially around the outer surface of the spigot end. An inner ring is fitted into the groove in the spigot end and has a radial edge which forms a substantially radial shoulder circumferentially around the inner ring. The pipe joint also comprises a second PVC pipe having a bell end, wherein a plurality of angularly-spaced-apart holes extend radially through the bell end. The bell end of the second PVC pipe is fitted onto the spigot end of the first PVC pipe. There is a set of radial fasteners, wherein each given one of the radial fasteners extends through one of the plurality of angularly-spaced-apart holes in the bell end such that a first end portion of the fastener abuts against a shoulder of the inner ring.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: July 19, 2005
    Assignee: Ipex Inc.
    Inventor: Erez Allouche
  • Publication number: 20030214134
    Abstract: The present invention relates to a PVC-pipe, axially-tensioned joint. The pipe joint comprises a first PVC pipe having a spigot end, wherein the spigot end has a circumferential groove in and circumferentially around the outer surface of the spigot end. An inner ring is fitted into the groove in the spigot end and has a radial edge which forms a substantially radial shoulder circumferentially around the inner ring. The pipe joint also comprises a second PVC pipe having a bell end, wherein a plurality of angularly-spaced-apart holes extend radially through the bell end. The bell end of the second PVC pipe is fitted onto the spigot end of the first PVC pipe. There is a set of radial fasteners, wherein each given one of the radial fasteners extends through one of the plurality of angularly-spaced-apart holes in the bell end such that a first end portion of the fastener abuts against a shoulder of the inner ring.
    Type: Application
    Filed: February 26, 2003
    Publication date: November 20, 2003
    Inventor: Erez Allouche