Patents by Inventor Erhard Landgraf

Erhard Landgraf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140339634
    Abstract: A transistor component includes an active transistor region arranged in the semiconductor body. And insulation region surrounds the active transistor region in the semiconductor body in a ring-shaped manner. A source zone, a drain zone, a body zone and a drift zone are disposed in the active transistor region. The source zone and the drain zone are spaced apart in a lateral direction of the semiconductor body and the body zone is arranged between the source zone and the drift zone and the drift zone is arranged between the body zone and the drain zone. A gate and field electrode is arranged over the active transistor region. The dielectric layer has a first thickness in a region near the body zone and a second thickness in a region near the drift zone.
    Type: Application
    Filed: July 1, 2014
    Publication date: November 20, 2014
    Inventors: Erhard Landgraf, Thomas Bertrams, Claus Dahl, Henning Feick, Andreas Pribil
  • Patent number: 8809952
    Abstract: A transistor component includes an active transistor region arranged in the semiconductor body. And insulation region surrounds the active transistor region in the semiconductor body in a ring-shaped manner. A source zone, a drain zone, a body zone and a drift zone are disposed in the active transistor region. The source zone and the drain zone are spaced apart in a lateral direction of the semiconductor body and the body zone is arranged between the source zone and the drift zone and the drift zone is arranged between the body zone and the drain zone. A gate and field electrode is arranged over the active transistor region. The dielectric layer has a first thickness in a region near the body zone and a second thickness in a region near the drift zone.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: August 19, 2014
    Assignee: Infineon Technologies AG
    Inventors: Erhard Landgraf, Thomas Bertrams, Claus Dahl, Henning Feick, Andreas Pribil
  • Patent number: 7719059
    Abstract: A fin field effect transistor arrangement comprises a substrate and a first fin field effect transistor on and/or in the substrate. The first fin field effect transistor includes a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. A second fin field effect transistor is provided on and/or in the substrate including a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. The second fin field effect transistor is arranged laterally alongside the first fin field effect transistor, wherein a height of the fin of the first fin field effect transistor is greater than a height of the fin of the second fin field effect transistor.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken
  • Patent number: 7718475
    Abstract: The present invention relates to a transistor comprising a gate channel area and a gate stack having mechanical stress arranged on the gate channel area.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: May 18, 2010
    Assignee: Qimonda AG
    Inventors: Matthias Goldbach, Erhard Landgraf, Michael Stadtmueller, Moritz Haupt, Sven Schmidbauer, Tobias Mono, Jorg Radecker
  • Patent number: 7709827
    Abstract: The invention relates to a vertical integrated component, a component arrangement and a method for production of a vertical integrated component. The vertical integrated component has a first electrical conducting layer, a mid layer, partly embodied from dielectric material on the first electrical conducting layer, a second electrical conducting layer on the mid layer and a nanostructure integrated in a through hold introduced in the mid layer. A first end section of the nanostructure is coupled to the first electrical conducting layer and a second end section is coupled to the second electrical conducting layer. The mid layer includes a third electrical conducting layer between two adjacent dielectric partial layers, the thickness of which is less than the thickness of at least one of the dielectric partial layers.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 4, 2010
    Assignee: Qimonda, AG
    Inventors: Andrew Graham, Franz Hofmann, Wolfgang Hönlein, Johannes Kretz, Franz Kreupl, Erhard Landgraf, Johannes Richard Luyken, Wolfgang Rösner, Thomas Schulz, Michael Specht
  • Publication number: 20090057678
    Abstract: A method of forming an integrated circuit, the method including forming at least one patterned gate stack on a substrate including a substrate surface; forming an amorphous substrate region in the substrate by implanting a first material in the substrate; and implanting a getter material to form a getter region within the amorphous substrate region; forming doped implant regions extending from the substrate surface in to the substrate by implanting a second material; and thermally recrystallizing the amorphous substrate region.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 5, 2009
    Inventors: Matthias Goldbach, Erhard Landgraf, Lars Dreeskornfeld
  • Publication number: 20080251815
    Abstract: The present invention relates to a transistor comprising a gate channel area and a gate stack having mechanical stress arranged on the gate channel area.
    Type: Application
    Filed: April 13, 2007
    Publication date: October 16, 2008
    Inventors: Matthias Goldbach, Erhard Landgraf, Michael Stadtmueller, Moritz Haupt, Sven Schmidbauer, Tobias Mono, Jorg Radecker
  • Patent number: 7344923
    Abstract: An NROM semiconductor memory device and fabrication method are disclosed. According to one aspect, a method for fabricating an NROM semiconductor memory device can include providing a plurality of u-shaped MOSFETs, which are spaced apart from one another and have a multilayer dielectric. The dielectric suitable for charge trapping along rows in a first direction and alone columns in a second direction in trenches of a semiconductor substrate. Source/drain regions are provided between the u-shaped MOSFETs in interspaces between the rows which run parallel to the columns. Isolation trenches are provided in the source/drain regions between the u-shaped MOSFETs of adjacent columns as far as a particular depth in the semiconductor substrate. The isolation trenches are filled with an insulation material. Word lines are provided for connecting respective rows of u-shaped MOSFETs.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: March 18, 2008
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Michael Specht
  • Patent number: 7265376
    Abstract: A nonvolatile memory cell, memory cell arrangement, and method for production of a nonvolatile memory cell is disclosed. The nonvolatile memory cell includes a vertical field-effect transistor (FET). The FET contains a nanoelement arranged as a channel region and an electrically insulating layer. The electrically insulating layer at least partially surrounds the nanoelement and acts as a charge storage layer and as a gate-insulating layer. The electrically insulating layer is arranged such that electrical charge carriers may be selectively introduced into or removed from the electrically insulating layer and the electrical conductivity characteristics of the nanoelement may be influenced by the electrical charge carriers introduced into the electrically insulating layer.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: September 4, 2007
    Assignee: Infineon Technologies, Inc.
    Inventors: Andrew Graham, Franz Hofmann, Wolfgang Hönlein, Johannes Kretz, Franz Kreupl, Erhard Landgraf, Richard Johannes Luyken, Wolfgang Rösner, Thomas Schulz, Michael Specht
  • Patent number: 7265413
    Abstract: The invention relates to a semiconductor memory having a multiplicity of memory cells and a method for forming the memory cells. The semiconductor memory generally includes a semiconductor layer arranged on a substrate surface that includes a normally positioned step between a deeper region and a higher region. The semiconductor memory further includes doped contact regions, channel regions, a trapping layer arranged on a gate oxide layer, and at least one gate electrode. The method for forming the memory cells includes patterning a semiconductor layer to form a deeper semiconductor region and a higher semiconductor region having a step positioned between the regions.
    Type: Grant
    Filed: March 5, 2005
    Date of Patent: September 4, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken, Thomas Schulz, Michael Specht
  • Publication number: 20070096196
    Abstract: A fin field effect transistor arrangement comprises a substrate and a first fin field effect transistor on and/or in the substrate. The first fin field effect transistor includes a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. A second fin field effect transistor is provided on and/or in the substrate including a fin in which a channel region is formed between a first source/drain region and a second source/drain region and above which a gate region is formed. The second fin field effect transistor is arranged laterally alongside the first fin field effect transistor, wherein a height of the fin of the first fin field effect transistor is greater than a height of the fin of the second fin field effect transistor.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 3, 2007
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Luyken
  • Patent number: 7208794
    Abstract: Semiconductor memory having memory cells, each including first and second conductively-doped contact regions and a channel region arranged between the latter, formed in a web-like rib made of semiconductor material and arranged one behind the other in this sequence in the longitudinal direction of the rib. The rib has an essentially rectangular shape with an upper side of the rib and rib side faces lying opposite. A memory layer is configured for programming the memory cell, arranged on the upper side of the rib spaced apart by a first insulator layer, and projects in the normal direction of the one rib side face over one of the rib side faces so that the one rib side face and the upper side of the rib form an edge for injecting charge carriers from the channel region into the memory layer.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: April 24, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken, Wolfgang Roesner, Michael Specht
  • Patent number: 7157768
    Abstract: In a semiconductor memory, a plurality of FinFET arrangements with trapping layers or floating gate electrodes as storage mediums are present on respective top sides of fins made from semiconductor material. The material of the gate electrodes is also present on two side walls of the fins, in order to form side wall transistors, and between the gate electrodes forms parts of a word line belonging to the corresponding fin.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: January 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Wolfgang Rosner, Michael Specht, Martin Staedele
  • Patent number: 7075148
    Abstract: The invention relates to a semiconductor memory having a multiplicity of memory cells, each of the memory cells having N (e.g., four) vertical memory transistors with trapping layers. Higher contact regions are formed in higher semiconductor regions extending obliquely with respect to the rows and columns of the cell array, the gate electrode generally being led to the step side areas of the higher semiconductor region. A storage density of 1-2F2 per bit can thus be achieved.
    Type: Grant
    Filed: March 5, 2005
    Date of Patent: July 11, 2006
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Richard Johannes Luyken, Thomas Schulz, Michael Specht
  • Publication number: 20060128088
    Abstract: The invention relates to a vertical integrated component, a component arrangement and a method for production of a vertical integrated component. The vertical integrated component has a first electrical conducting layer, a mid layer, partly embodied from dielectric material on the first electrical conducting layer, a second electrical conducting layer on the mid layer and a nanostructure integrated in a through hold introduced in the mid layer. A first end section of the nanostructure is coupled to the first electrical conducting layer and a second end section is coupled to the second electrical conducting layer. The mid layer includes a third electrical conducting layer between two adjacent dielectric partial layers, the thickness of which is less than the thickness of at least one of the dielectric partial layers.
    Type: Application
    Filed: October 29, 2003
    Publication date: June 15, 2006
    Inventors: Andrew Graham, Franz Hofmann, Wolfgang Honlein, Johannes Kretz, Franz Kreupl, Erhard Landgraf, Johannes Luyken, Wolfgang Rosner, Thomas Schulz, Michael Specht
  • Publication number: 20060108646
    Abstract: This invention relates to a method for producing an NROM semiconductor memory device and a corresponding NROM semiconductor memory device. The inventive production method comprises the following steps: a plurality of spaced-apart U-shaped MOSFETS are provided along rows in a first direction and along gaps in a second direction inside trenches of a semiconductor substrate, said U-shaped MOSFETS comprising a multilayer dielectric, especially an ONO dielectric, for trapping charges; source/drain areas are provided between the U-shaped MOSFETS in intermediate spaces located between the rows that extend parallel to the gaps; insulating trenches are provided in the source/drain areas between the U-shaped MOSFETS of adjacent gaps, down to a certain depth in the semiconductor substrate, said insulating trenches cutting up the source/drain areas into respective bit lines; the insulating trenches are filled with an insulating material; and word lines are provided for connecting respective rows of U-shaped MOSFETS.
    Type: Application
    Filed: November 18, 2005
    Publication date: May 25, 2006
    Inventors: Franz Hofmann, Erhard Landgraf, Michael Specht
  • Publication number: 20060035442
    Abstract: In a process for producing a layer arrangement, a first layer is formed with a thickness on a first side of a substrate, which thickness is greater than a minimum thickness for epitaxial growth, a second layer is epitaxially grown on the first layer, and a third layer is formed on the second layer. Furthermore, a handling wafer is bonded to the third layer, the substrate is removed from a second side, which is the opposite side to the first side of the substrate, and the first layer is thinned in subregions from the second side, so that after the thinning the thickness of the first layer is lower than a minimum thickness for epitaxial growth.
    Type: Application
    Filed: July 5, 2005
    Publication date: February 16, 2006
    Applicant: Infineon Technologies AG
    Inventors: Gurkan Ilicali, Erhard Landgraf, Wolfgang Roesner, Franz Hofmann
  • Patent number: 6982202
    Abstract: Method of fabricating a memory cell, in which a storage layer, which is designed for programming by charge carrier trapping, and a gate electrode, which is electrically insulated from a semiconductor material, are fabricated at a top side of a semiconductor body or a semiconductor layer structure above a channel region provided between doped source-drain regions. The method includes the steps of fabricating at least one trench in the top side, providing at least portions of the trench walls which adjoin the source-drain regions to be fabricated with the storage layer, depositing a material provided for the gate electrode into the trench, forming the source-drain regions by covering the gate electrode, removing, on both sides of the trench, the semiconductor material down to an intended depth, and implanting dopant, and applying an insulation layer to the source-drain region, and fabricating an electrical connection for the gate electrode.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: January 3, 2006
    Assignee: Infineon Technologies AG
    Inventors: Franz Hofmann, Erhard Landgraf, Hannes Luyken
  • Publication number: 20050276093
    Abstract: A memory cell having a storage capacitor and a vertical switching transistorm, which has a semiconducting nanostructure which has grown on at least part of the storage capacitor and includes a semiconducting nanotube, a bundle of semiconducting nanotubes, or a semiconducting nanorod.
    Type: Application
    Filed: April 29, 2005
    Publication date: December 15, 2005
    Applicant: Infineon Technologies AG
    Inventors: Andrew Graham, Franz Hofmann, Wolfgang Honlein, Johannes Kretz, Franz Kreupl, Erhard Landgraf, Richard Luyken, Wolfgang Roesner, Thomas Schulz, Michael Specht
  • Publication number: 20050224888
    Abstract: Integrated circuit array having field effect transistors (FETs) formed next to and/or above one another. The array has a substrate, a planarized first wiring plane with interconnects and first source/drain regions of the FETs, a planarized first insulator layer on the first wiring plane, a planarized gate region layer, which has patterned gate regions made of electrically conductive material and insulator material introduced therebetween, on the first insulated layer, a planarized second insulator layer on the gate region layer, holes formed through the second insulator layer, the gate regions, and the first insulator layer, a vertical nanoelement serving as a channel region in each of the holes, a second wiring plane with interconnects and second source/drain regions of the FETs, each nanoelement being arranged between the first and second wiring planes, and a gate insulating layer between the respective vertical nanoelement and the electrically conductive material of the gate regions.
    Type: Application
    Filed: April 27, 2005
    Publication date: October 13, 2005
    Applicant: Infineon Technologies AG
    Inventors: Andrew Graham, Franz Hofmann, Wolfgang Honlein, Johannes Kretz, Franz Kreupl, Erhard Landgraf, Richard Luyken, Wolfgang Roesner, Thomas Schulz, Michael Specht