Patents by Inventor Eri OKAZAKI

Eri OKAZAKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10470301
    Abstract: Provided are a conductive pattern manufacturing method and a conductive pattern formed substrate, capable of easily achieving a narrow pitch. A metal nanowire layer 12 is formed on the entirety of a part of at least one of the main faces of a substrate 10, pulsed light is irradiated thereto through a mask 14 provided with a light transmission portion 14a formed in a predetermined pattern, and the metal nanowires in the metal nanowire layer 12 at the region having the above predetermined pattern were sintered, to thereby obtain conductivity at the predetermined patterned region. Accordingly, a substrate provided with a conductive pattern having any selected pattern can be produced by simple steps.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: November 5, 2019
    Assignee: SHOWA DENKO K.K.
    Inventors: Hiroshi Uchida, Kenji Shinozaki, Eri Okazaki, Hideki Ohata, Yasunao Miyamura
  • Patent number: 10099291
    Abstract: Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: October 16, 2018
    Assignees: SHOWA DENKO K.K., OSAKA UNIVERSITY
    Inventors: Katsuaki Suganuma, Jinting Jiu, Masaya Nogi, Tohru Sugahara, Teppei Araki, Hiroshi Uchida, Hideki Ohata, Masanao Hara, Eri Okazaki
  • Patent number: 9854670
    Abstract: Provided are a transparent electrode and a production method thereof, the transparent electrode using metal nanowires and/or metal nanotubes as conductive components, and showing favorable surface flatness, conductivity, and light transmittance. A transparent conductive ink is prepared by dispersing metal nanowires and/or metal nanotubes in a solution formed by dissolving a thermoset or thermoplastic binder resin having no fluidity within the range of 5 to 40° C. to a solvent, the content of the binder resin being 100 to 2500 parts by mass relative to 100 parts by mass of the metal nanowires and/or metal nanotubes. An electrode pattern having a desired shape is printed on a substrate with the transparent conductive ink, and pulsed light is irradiated to the printed electrode pattern, to thereby obtain a transparent electrode having a surface resistance of 0.1 to 500?/? and a surface arithmetic average roughness Ra satisfying Ra?5 nm.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: December 26, 2017
    Assignee: SHOWA DENKO K.K.
    Inventors: Hiroshi Uchida, Yasunao Miyamura, Eri Okazaki, Hideki Ohata
  • Publication number: 20160205775
    Abstract: Provided are a transparent electrode and a production method thereof, the transparent electrode using metal nanowires and/or metal nanotubes as conductive components, and showing favorable surface flatness, conductivity, and light transmittance. A transparent conductive ink is prepared by dispersing metal nanowires and/or metal nanotubes in a solution formed by dissolving a thermoset or thermoplastic binder resin having no fluidity within the range of 5 to 40° C. to a solvent, the content of the binder resin being 100 to 2500 parts by mass relative to 100 parts by mass of the metal nanowires and/or metal nanotubes. An electrode pattern having a desired shape is printed on a substrate with the transparent conductive ink, and pulsed light is irradiated to the printed electrode pattern, to thereby obtain a transparent electrode having a surface resistance of 0.1 to 500?/? and a surface arithmetic average roughness Ra satisfying Ra?5 nm.
    Type: Application
    Filed: August 14, 2014
    Publication date: July 14, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Hiroshi UCHIDA, Yasunao MIYAMURA, Eri OKAZAKI, Hideki OHATA
  • Publication number: 20160121403
    Abstract: Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
    Type: Application
    Filed: May 26, 2014
    Publication date: May 5, 2016
    Applicants: SHOWA DENKO K.K., OSAKA UNIVERSITY
    Inventors: Katsuaki SUGANUMA, Jinting JIU, Masaya NOGI, Tohru SUGAHARA, Teppei ARAKI, Hiroshi UCHIDA, Hideki OHATA, Masanao HARA, Eri OKAZAKI
  • Publication number: 20160073494
    Abstract: Provided are a conductive pattern manufacturing method and a conductive pattern formed substrate, capable of easily achieving a narrow pitch. A metal nanowire layer 12 is formed on the entirety of a part of at least one of the main faces of a substrate 10, pulsed light is irradiated thereto through a mask 14 provided with a light transmission portion 14a formed in a predetermined pattern, and the metal nanowires in the metal nanowire layer 12 at the region having the above predetermined pattern were sintered, to thereby obtain conductivity at the predetermined patterned region. Accordingly, a substrate provided with a conductive pattern having any selected pattern can be produced by simple steps.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 10, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Hiroshi UCHIDA, Kenji SHINOZAKI, Eri OKAZAKI, Hideki OHATA, Yasunao MIYAMURA