Patents by Inventor Eric A. Howell

Eric A. Howell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10808789
    Abstract: There is provided a translational inerter assembly for damping movement of a flight control surface of an aircraft with a support structure. The translational inerter assembly includes a press fit element rotatably disposed within the flight control surface. The translational inerter assembly further includes an inertia element disposed in the press fit element. The translational inerter assembly further includes a torsion bar coupled to the inertia element and to the support structure of the aircraft, such that when the flight control surface rotates, the inertia element translates, and movement of the flight control surface is dampened.
    Type: Grant
    Filed: October 13, 2018
    Date of Patent: October 20, 2020
    Assignee: The Boeing Company
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Patent number: 10526975
    Abstract: A power extraction system and method for a gas turbine engine of a vehicle are provided. The system has an HP spool tower shaft coupled between an HP spool of the gas turbine engine and an accessory gearbox assembly coupled to the gas turbine engine. The HP spool tower shaft extracts mechanical power from the HP spool. The system has an LP spool tower shaft coupled between an LP spool of the gas turbine engine and the accessory gearbox assembly. The LP spool tower shaft extracts mechanical power from the LP spool. The system further has the accessory gearbox assembly having an accessory drive combining the mechanical power from both the HP spool and LP spool, having a planetary gear train coupled to the accessory drive, and having one or more engine-driven accessories coupled to the planetary gear train and driven by a planetary gear train output to generate power.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: January 7, 2020
    Assignee: The Boeing Company
    Inventors: Eric A. Howell, Jeffrey M. Roach, Thomas W. Omohundro
  • Patent number: 10352389
    Abstract: There is provided a dual rack and pinion rotational inerter system for damping movement of a flight control surface of an aircraft having a support structure. The system has a flexible holding structure disposed between the flight control surface and the support structure. The system has a dual rack and pinion assembly held by the flexible holding structure. The system has a first terminal and a second terminal, coupled to the dual rack and pinion assembly. The first terminal is coupled to the flight control surface. The system has a pair of inertia wheels coupled to the flexible holding structure. The system has an axle element inserted through the inertia wheels, the flexible holding structure, and the dual rack and pinion assembly, such that when the flight control surface rotates, the dual rack and pinion rotational inerter system translates and rotates, and movement of the flight control surface is dampened.
    Type: Grant
    Filed: October 13, 2018
    Date of Patent: July 16, 2019
    Assignee: The Boeing Company
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Publication number: 20190048959
    Abstract: There is provided a translational inerter assembly for damping movement of a flight control surface of an aircraft with a support structure. The translational inerter assembly includes a press fit element rotatably disposed within the flight control surface. The translational inerter assembly further includes an inertia element disposed in the press fit element. The translational inerter assembly further includes a torsion bar coupled to the inertia element and to the support structure of the aircraft, such that when the flight control surface rotates, the inertia element translates, and movement of the flight control surface is dampened.
    Type: Application
    Filed: October 13, 2018
    Publication date: February 14, 2019
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Publication number: 20190048961
    Abstract: There is provided a dual rack and pinion rotational inerter system for damping movement of a flight control surface of an aircraft having a support structure. The system has a flexible holding structure disposed between the flight control surface and the support structure. The system has a dual rack and pinion assembly held by the flexible holding structure. The system has a first terminal and a second terminal, coupled to the dual rack and pinion assembly. The first terminal is coupled to the flight control surface. The system has a pair of inertia wheels coupled to the flexible holding structure. The system has an axle element inserted through the inertia wheels, the flexible holding structure, and the dual rack and pinion assembly, such that when the flight control surface rotates, the dual rack and pinion rotational inerter system translates and rotates, and movement of the flight control surface is dampened.
    Type: Application
    Filed: October 13, 2018
    Publication date: February 14, 2019
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Patent number: 10145434
    Abstract: There is provided a translational inerter assembly for damping movement of a flight control surface of an aircraft. The assembly has a press fit element fixedly disposed within a first end of the flight control surface and rotatably movable with the flight control surface. The assembly further has an inertia element coupled to and installed in the press fit element. The assembly further has a torsion bar having a torsion bar first end coupled to and installed in the inertia element, and having a torsion bar second end fixedly attached to a support structure of the aircraft. Rotation of the flight control surface causes translational movement of the inertia element, via the press fit element, along a hinge axis of the flight control surface and along the torsion bar, resulting in the translational inerter assembly damping movement of the flight control surface.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 4, 2018
    Assignee: The Boeing Company
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Patent number: 10107347
    Abstract: There is provided a dual rack and pinion rotational inerter system for damping movement of a flight control surface of an aircraft. The system has a flexible holding structure disposed between the flight control surface and a support structure of the aircraft. The system has a dual rack and pinion assembly held by and between the flexible holding structure. The dual rack and pinion assembly has a first rack, a second rack, and a pinion engaged to and between the racks. The system has a first terminal coupled to the first rack and coupled to the flight control surface, via a pivot element, and a second terminal coupled to the second rack, and coupled to the support structure. The system has a pair of inertia wheels adjacent the flexible holding structure. The system has an axle element inserted through the inertial wheels, the flexible holding structure, and the pinion.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 23, 2018
    Assignee: The Boeing Company
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Publication number: 20180156293
    Abstract: There is provided a dual rack and pinion rotational inerter system for damping movement of a flight control surface of an aircraft. The system has a flexible holding structure disposed between the flight control surface and a support structure of the aircraft. The system has a dual rack and pinion assembly held by and between the flexible holding structure. The dual rack and pinion assembly has a first rack, a second rack, and a pinion engaged to and between the racks. The system has a first terminal coupled to the first rack and coupled to the flight control surface, via a pivot element, and a second terminal coupled to the second rack, and coupled to the support structure. The system has a pair of inertia wheels adjacent the flexible holding structure. The system has an axle element inserted through the inertial wheels, the flexible holding structure, and the pinion.
    Type: Application
    Filed: January 11, 2018
    Publication date: June 7, 2018
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell
  • Publication number: 20180149091
    Abstract: A power extraction system and method for a gas turbine engine of a vehicle are provided. The system has an HP spool tower shaft coupled between an HP spool of the gas turbine engine and an accessory gearbox assembly coupled to the gas turbine engine. The HP spool tower shaft extracts mechanical power from the HP spool. The system has an LP spool tower shaft coupled between an LP spool of the gas turbine engine and the accessory gearbox assembly. The LP spool tower shaft extracts mechanical power from the LP spool. The system further has the accessory gearbox assembly having an accessory drive combining the mechanical power from both the HP spool and LP spool, having a planetary gear train coupled to the accessory drive, and having one or more engine-driven accessories coupled to the planetary gear train and driven by a planetary gear train output to generate power.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Inventors: Eric A. Howell, Jeffrey M. Roach, Thomas W. Omohundro
  • Publication number: 20180135717
    Abstract: There is provided a translational inerter assembly for damping movement of a flight control surface of an aircraft. The assembly has a press fit element fixedly disposed within a first end of the flight control surface and rotatably movable with the flight control surface. The assembly further has an inertia element coupled to and installed in the press fit element. The assembly further has a torsion bar having a torsion bar first end coupled to and installed in the inertia element, and having a torsion bar second end fixedly attached to a support structure of the aircraft. Rotation of the flight control surface causes translational movement of the inertia element, via the press fit element, along a hinge axis of the flight control surface and along the torsion bar, resulting in the translational inerter assembly damping movement of the flight control surface.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 17, 2018
    Inventors: Michael T. Fox, Jeffrey M. Roach, Eric A. Howell