Patents by Inventor Eric A. Stach

Eric A. Stach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190237295
    Abstract: Embodiments of the invention provide for an electron microscope sample holder, which includes a membrane, a support frame partially surrounding a perimeter or circumference of the membrane, a mounting area for mounting a sample to the membrane, where the mounting area abuts a perimeter or circumference of the membrane not surrounded by the support frame, at least two of conducting contact pads mounted on a the support frame, and at least one electrode lead mounted on the membrane and in electric contact with at least one conducting contact pad.
    Type: Application
    Filed: January 25, 2019
    Publication date: August 1, 2019
    Inventors: Fernando Enrique Camino, Myung-Geun Han, Dong Su, Eric Stach, Paulo Castillo, Ming Lu
  • Patent number: 9263166
    Abstract: A sintered structure and method for forming it are disclosed. The method includes obtaining core-shell particles having a core material and a shell material, forming the particles into a powder compact, and annealing the powder compact at an annealing temperature. The shell material is a metal that diffuses faster than the core material at the annealing temperature and diffuses to the contacts between the core-shell particles during annealing to form sintered interfaces between the core-shell particles. The sintered structure can have discontinuous regions of shell material between the sintered interfaces. The core material can be a metal, semiconductor or ceramic. The core material can be copper and the shell material can be silver. The sintered interfaces can be almost purely shell material. The annealing temperature can be significantly lower than the temperature needed to form interfaces between particles of the core material without the shell material.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: February 16, 2016
    Assignee: Purdue Research Foundation
    Inventors: Carol Anne Handwerker, Suk Jun Kim, Eric A. Stach
  • Publication number: 20140370322
    Abstract: A sintered structure and method for forming it are disclosed. The method includes obtaining core-shell particles having a core material and a shell material, forming the particles into a powder compact, and annealing the powder compact at an annealing temperature. The shell material is a metal that diffuses faster than the core material at the annealing temperature and diffuses to the contacts between the core-shell particles during annealing to form sintered interfaces between the core-shell particles. The sintered structure can have discontinuous regions of shell material between the sintered interfaces. The core material can be a metal, semiconductor or ceramic. The core material can be copper and the shell material can be silver. The sintered interfaces can be almost purely shell material. The annealing temperature can be significantly lower than the temperature needed to form interfaces between particles of the core material without the shell material.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 18, 2014
    Inventors: Carol Anne Handwerker, Suk Jun Kim, Eric A. Stach
  • Publication number: 20110318213
    Abstract: A sintered structure and method for forming it are disclosed. The method includes obtaining core-shell particles having a core material and a shell material, forming the particles into a powder compact, and annealing the powder compact at an annealing temperature. The shell material is a metal that diffuses faster than the core material at the annealing temperature and diffuses to the contacts between the core-shell particles during annealing to form sintered interfaces between the core-shell particles. The sintered structure can have discontinuous regions of shell material between the sintered interfaces. The core material can be a metal, semiconductor or ceramic. The core material can be copper and the shell material can be silver. The sintered interfaces can be almost purely shell material. The annealing temperature can be significantly lower than the temperature needed to form interfaces between particles of the core material without the shell material.
    Type: Application
    Filed: September 8, 2010
    Publication date: December 29, 2011
    Inventors: Carol Anne Handwerker, Suk Jun Kim, Eric A. Stach
  • Publication number: 20110198569
    Abstract: A method for patterning nanostructures in a semiconductor heterostructure, which has at least a first layer and a second layer, wherein the first layer has a first surface and an opposite, second surface, the second layer has a first surface and an opposite, second surface, and the first layer is deposited over the second layer such that the second surface of the first layer is proximate to the first surface of the second layer. The method includes the steps of making indentations in a pattern on the first surface of the first layer of the semiconductor heterostructure; bonding the semiconductor heterostructure to a support substrate such that the first surface of the first layer of the semiconductor heterostructure is faced to the support substrate; etching off the second layer of the semiconductor heterostructure; and depositing a third layer over the second surface of the first layer of the semiconductor heterostructure.
    Type: Application
    Filed: March 6, 2009
    Publication date: August 18, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Ajay P. Malshe, Curtis R. Taylor, Gregory Salamo, Eric Stach, Robin Prince, Zhiming Wang
  • Publication number: 20060025002
    Abstract: A device and method for fabricating a device holder for use with a standard holder body of a transmission electron microscope for use with in situ microscopy of both static and dynamic mechanisms. One or more electrical contact fingers is disposed between a baseplate and a frame, with a MEMS device making contact with the electrical contact fingers. A connector is provided to matingly engage the transmission electron microscope and the device holder to couple the device holder to the transmission electron microscope. Once clamped between the baseplate and frame, the electrical contact fingers may be separated from the template.
    Type: Application
    Filed: July 28, 2005
    Publication date: February 2, 2006
    Inventors: Ming Zhang, Ivan Petrov, Jianguo Wen, Eric Stach, Leslie Allen, Ian Robertson, Eric Olson