Patents by Inventor Eric Bruening

Eric Bruening has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11661628
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: May 30, 2023
    Assignee: Takara Bio USA, Inc.
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Patent number: 11628215
    Abstract: Provided herein are HIV-1 vaccines comprising a carrier and a population episensus antigen determined using the EpiGraph approach. Also provided are HIV-1 vaccines comprising a carrier, a population episensus antigen, and a tailored antigen. Also provided are methods of designing and producing an HIV-1 vaccine for a subject comprising designing vaccine antigens to optimally cover the diversity within a geographic area using an antigen amino acid sequence generated using the EpiGraph approach, and producing said designed vaccine antigen. Also provided are methods of inducing an effector memory T cell response comprising designing the one or more EpiGraph amino acid sequences, producing a vaccine comprising the one or more EpiGraph amino acid sequences and a vector, and administering the vaccine to a subject. Further provided are methods of treating HIV-1 in a subject comprising administering an effective amount of the described HIV-1 vaccines to the subject in need thereof.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 18, 2023
    Assignees: Vir Biotechnology, Inc., Triad National Security, LLC, Oregon Health & Science University
    Inventors: Eric Bruening, Klaus Frueh, Louis Picker, Bette T. M. Korber, James Theiler, Emily Marshall
  • Patent number: 11554168
    Abstract: Provided herein are HIV-1 vaccines comprising a carrier and a population episensus antigen determined using the EpiGraph approach. Also provided are HIV-1 vaccines comprising a carrier, a population episensus antigen, and a tailored antigen. Also provided are methods of designing and producing an HIV-1 vaccine for a subject comprising designing vaccine antigens to optimally cover the diversity within a geographic area using an antigen amino acid sequence generated using the EpiGraph approach, and producing said designed vaccine antigen. Also provided are methods of inducing an effector memory T cell response comprising designing the one or more EpiGraph amino acid sequences, producing a vaccine comprising the one or more EpiGraph amino acid sequences and a vector, and administering the vaccine to a subject. Further provided are methods of treating HIV-1 in a subject comprising administering an effective amount of the described HIV-1 vaccines to the subject in need thereof.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 17, 2023
    Assignees: Vir Biotechnology, Inc., Triad National Security, LLC, Oregon Health & Science University
    Inventors: Eric Bruening, Klaus Frueh, Louis Picker, Bette T. M. Korber, James Theiler, Emily Marshall
  • Patent number: 11492663
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 8, 2022
    Assignee: Takara Bio USA, Inc.
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Publication number: 20220288195
    Abstract: The present disclosure relates to isolated polynucleotides and polypeptides, and related hepatitis B virus (HBV)vaccines. The present disclosure also relates to viral vectors for expressing such polypeptides, and which may be used in HBV vaccines, as well as methods of protecting a subject from HBV infection and methods of treating HBV in a subject comprising administering the polypeptides, vectors, or vaccines described herein. Methods of designing and producing an HBV vaccine comprising designing vaccine antigens to cover the diversity within a geographic area using an antigen amino acid sequence that efficiently covers the epitopes in the HBV genotypes present in the geographic area are also provided herein.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 15, 2022
    Inventors: Eric BRUENING, Janet DOUGLAS, Emily MARSHALL, Karina YUSIM, Bette KORBER, James THEILER
  • Publication number: 20210046174
    Abstract: Provided herein are HIV-1 vaccines comprising a carrier and a population episensus antigen determined using the EpiGraph approach. Also provided are HIV-1 vaccines comprising a carrier, a population episensus antigen, and a tailored antigen. Also provided are methods of designing and producing an HIV-1 vaccine for a subject comprising designing vaccine antigens to optimally cover the diversity within a geographic area using an antigen amino acid sequence generated using the EpiGraph approach, and producing said designed vaccine antigen. Also provided are methods of inducing an effector memory T cell response comprising designing the one or more EpiGraph amino acid sequences, producing a vaccine comprising the one or more EpiGraph amino acid sequences and a vector, and administering the vaccine to a subject. Further provided are methods of treating HIV-1 in a subject comprising administering an effective amount of the described HIV-1 vaccines to the subject in need thereof.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 18, 2021
    Inventors: Eric Bruening, Klaus Frueh, Louis Picker, Bette T.M. Korber, James Theiler, Emily Marshall
  • Publication number: 20210046175
    Abstract: Provided herein are HIV-1 vaccines comprising a carrier and a population episensus antigen determined using the EpiGraph approach. Also provided are HIV-1 vaccines comprising a carrier, a population episensus antigen, and a tailored antigen. Also provided are methods of designing and producing an HIV-1 vaccine for a subject comprising designing vaccine antigens to optimally cover the diversity within a geographic area using an antigen amino acid sequence generated using the EpiGraph approach, and producing said designed vaccine antigen. Also provided are methods of inducing an effector memory T cell response comprising designing the one or more EpiGraph amino acid sequences, producing a vaccine comprising the one or more EpiGraph amino acid sequences and a vector, and administering the vaccine to a subject. Further provided are methods of treating HIV-1 in a subject comprising administering an effective amount of the described HIV-1 vaccines to the subject in need thereof.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 18, 2021
    Inventors: Eric Bruening, Klaus Frueh, Louis Picker, Bette T.M. Korber, James Theiler, Emily Marshall
  • Patent number: 10894078
    Abstract: Provided herein are HIV-1 vaccines comprising a carrier and a population episensus antigen determined using the EpiGraph approach. Also provided are HIV-1 vaccines comprising a carrier, a population episensus antigen, and a tailored antigen. Also provided are methods of designing and producing an HIV-1 vaccine for a subject comprising designing vaccine antigens to optimally cover the diversity within a geographic area using an antigen amino acid sequence generated using the EpiGraph approach, and producing said designed vaccine antigen. Also provided are methods of inducing an effector memory T cell response comprising designing the one or more EpiGraph amino acid sequences, producing a vaccine comprising the one or more EpiGraph amino acid sequences and a vector, and administering the vaccine to a subject. Further provided are methods of treating HIV-1 in a subject comprising administering an effective amount of the described HIV-1 vaccines to the subject in need thereof.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: January 19, 2021
    Assignees: Vir Biotechnology, Inc., Triad National Security, LLC, Oregon Health & Science University
    Inventors: Eric Bruening, Klaus Frueh, Louis Picker, Bette T. M. Korber, James Theiler, Emily Marshall
  • Patent number: 10837049
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 17, 2020
    Assignee: Takara Bio USA, Inc.
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Publication number: 20190271033
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Application
    Filed: February 15, 2019
    Publication date: September 5, 2019
    Inventors: Emmanuel KAMBEROV, Tong SUN, Eric BRUENING, Jonathon H. PINTER, Irina SLEPTSOVA, Takao KURIHARA, Vladimir L. MAKAROV
  • Patent number: 10214771
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: February 26, 2019
    Assignee: Takara Bio USA, Inc.
    Inventors: Vladimir L. Makarov, Irina Sleptsova, Emmanuel Kamberov, Eric Bruening
  • Publication number: 20180030522
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 1, 2018
    Inventors: Emmanuel KAMBEROV, Tong SUN, Eric BRUENING, Jonathon H. PINTER, Irina SLEPTSOVA, Takao KURIHARA, Vladimir L. MAKAROV
  • Publication number: 20170037460
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 9, 2017
    Applicant: RUBICON GENOMICS, INC.
    Inventors: Vladimir L. MAKAROV, Irina SLEPTSOVA, Emmanuel KAMBEROV, Eric BRUENING
  • Publication number: 20160355879
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Application
    Filed: July 22, 2016
    Publication date: December 8, 2016
    Applicant: Rubicon Genomics, Inc.
    Inventors: Emmanuel KAMBEROV, Tong SUN, Eric BRUENING, Jonathon H. PINTER, Irina SLEPTSOVA, Takao KURIHARA, Vladimir L. MAKAROV
  • Patent number: 9410193
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: August 9, 2016
    Assignee: Rubicon Genomics, Inc.
    Inventors: Vladimir L. Makarov, Irina Sleptsova, Emmanuel Kamberov, Eric Bruening
  • Publication number: 20150087528
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 26, 2015
    Applicant: RUBICON GENOMICS, INC.
    Inventors: Vladimir L. MAKAROV, Irina SLEPTSOVA, Emmanuel KAMBEROV, Eric BRUENING
  • Patent number: 8815504
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 26, 2014
    Assignee: Rubicon Genomics, Inc.
    Inventors: Vladimir L. Makarov, Irina Sleptsova, Emmanuel Kamberov, Eric Bruening
  • Publication number: 20130085083
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Application
    Filed: June 4, 2012
    Publication date: April 4, 2013
    Applicant: Rubicon Genomics
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Patent number: 8206913
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: June 26, 2012
    Assignee: Rubicon Genomics, Inc.
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Publication number: 20100145037
    Abstract: The present invention is directed to methods to prepare a DNA molecule or a plurality of DNA molecules by random fragmentation. In some embodiments, the present invention regards preparing a template for DNA sequencing by random fragmentation. In specific embodiments, the random fragmentation comprises chemical fragmentation, mechanical fragmentation, or enzymatic fragmentation. In further specific embodiments, a universal sequence is attached to the 3? end of the DNA fragments, such as by ligation of an adaptor sequence or by homopolymeric tailing with terminal deoxynucleotidyltransferase. In other embodiments, a library is prepared with methods of the present invention.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 10, 2010
    Applicant: RUBICON GENOMICS, INC.
    Inventors: Vladimir L. Makarov, Irina Sleptsova, Emmanuel Kamberov, Eric Bruening