Patents by Inventor Eric C. Hannah

Eric C. Hannah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10777366
    Abstract: Methods of increasing an energy density of an energy storage device involve increasing the capacitance of the energy storage device by depositing a material into a porous structure of the energy storage device using an atomic layer deposition process, by performing a procedure designed to increase a distance to which an electrolyte penetrates within channels of the porous structure, or by placing a dielectric material into the porous structure. Another method involves annealing the energy storage device in order to cause an electrically conductive substance to diffuse to a surface of the structure and form an electrically conductive layer thereon. Another method of increasing energy density involves increasing the breakdown voltage and another method involves forming a pseudocapacitor. A method of increasing an achievable power output of an energy storage device involves depositing an electrically conductive material into the porous structure.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 15, 2020
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Zhaohui Chen, Wei C. Jin, Scott B. Clendenning, Eric C. Hannah, Tomm V. Aldridge, John L. Gustafson
  • Publication number: 20190103229
    Abstract: Methods of increasing an energy density of an energy storage device involve increasing the capacitance of the energy storage device by depositing a material into a porous structure of the energy storage device using an atomic layer deposition process, by performing a procedure designed to increase a distance to which an electrolyte penetrates within channels of the porous structure, or by placing a dielectric material into the porous structure. Another method involves annealing the energy storage device in order to cause an electrically conductive substance to diffuse to a surface of the structure and form an electrically conductive layer thereon. Another method of increasing energy density involves increasing the breakdown voltage and another method involves forming a pseudocapacitor. A method of increasing an achievable power output of an energy storage device involves depositing an electrically conductive material into the porous structure.
    Type: Application
    Filed: March 26, 2018
    Publication date: April 4, 2019
    Inventors: Donald S. Gardner, Zhaohui Chen, Wei C. Jin, Scott B. Clendenning, Eric C. Hannah, Tomm V. Aldridge, John L. Gustafson
  • Patent number: 10170244
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods may include forming an electrochemical capacitor device by forming pores in low-purity silicon materials. Various embodiments described herein enable the fabrication of high capacitive devices using low cost techniques.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 1, 2019
    Assignee: INTEL CORPORATION
    Inventors: Donald S. Gardner, Cary L. Pint, Charles W. Holzwarth, Wei Jin, Zhaohui Chen, Yang Liu, Eric C. Hannah, John L. Gustafson
  • Patent number: 10014123
    Abstract: In one embodiment of the invention, a method of forming an energy storage device is described in which a porous structure of an electrically conductive substrate is measured in-situ while being electrochemically etched in an electrochemical etching bath until a predetermined value is obtained, at which point the electrically conductive substrate may be removed from the electrochemical etching bath. In another embodiment, a method of forming an energy storage device is described in which an electrically conductive porous structure is measured to determine the energy storage capacity of the electrically conductive porous structure. The energy storage capacity of the electrically conductive porous structure is then reduced until a predetermined energy storage capacity value is obtained.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 3, 2018
    Assignee: INTEL CORPORATION
    Inventors: Eric C. Hannah, Cary L. Pint, Charles W. Holzwarth, John L. Gustafson
  • Patent number: 9989655
    Abstract: Described is a chip comprising: a substrate; a logic unit forming an active circuit on the substrate; and a cosmic ray detector embedded in the substrate, the cosmic ray detector to detect a cosmic ray and to generate a signal indicating detection of the cosmic ray, the signal for reducing error in the logic unit.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: June 5, 2018
    Assignee: Intel Corporation
    Inventor: Eric C. Hannah
  • Publication number: 20160329163
    Abstract: In one embodiment of the invention, a method of forming an energy storage device is described in which a porous structure of an electrically conductive substrate is measured in-situ while being electrochemically etched in an electrochemical etching bath until a predetermined value is obtained, at which point the electrically conductive substrate may be removed from the electrochemical etching bath. In another embodiment, a method of forming an energy storage device is described in which an electrically conductive porous structure is measured to determine the energy storage capacity of the electrically conductive porous structure. The energy storage capacity of the electrically conductive porous structure is then reduced until a predetermined energy storage capacity value is obtained.
    Type: Application
    Filed: March 9, 2016
    Publication date: November 10, 2016
    Inventors: Eric C. Hannah, Cary L. Pint, Charles W. Holzwarth, John L. Gustafson
  • Publication number: 20160268065
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Application
    Filed: May 25, 2016
    Publication date: September 15, 2016
    Applicant: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John L. Gustafson
  • Patent number: 9409767
    Abstract: An energy storage structure includes an energy storage device containing at least one porous structure (110, 120, 510, 1010) that contains multiple channels (111, 121), each one of which has an opening (112, 122) to a surface (115, 116, 515, 516, 1015, 1116) of the porous structure, and further includes a support structure (102, 402, 502, 1002) for the energy storage device. In a particular embodiment, the porous structure and the support structure are both formed from a first material, and the support structure physically contacts a first portion (513, 813, 1213) of the energy storage device and exposes a second portion (514, 814, 1214) of the energy storage device.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 9, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Zhaohui Chen, Wei C. Jin, Eric C. Hannah, John L. Gustafson, Tomm V. Aldridge
  • Patent number: 9406450
    Abstract: In one embodiment, a structure for a energy storage device may include at one polycrystalline substrate. The grain size may be designed to be at least a size at which phonon scattering begins to dominate over grain boundary scattering in the polycrystalline substrate. The structure also includes a porous structure containing multiple channels within the polycrystalline substrate.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 2, 2016
    Assignee: Intel Corporation
    Inventor: Eric C. Hannah
  • Patent number: 9368290
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: June 14, 2016
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John Gustafson
  • Patent number: 9299505
    Abstract: In one embodiment of the invention, a method of forming an energy storage device is described in which a porous structure of an electrically conductive substrate is measured in-situ while being electrochemically etched in an electrochemical etching bath until a predetermined value is obtained, at which point the electrically conductive substrate may be removed from the electrochemical etching bath. In another embodiment, a method of forming an energy storage device is described in which an electrically conductive porous structure is measured to determine the energy storage capacity of the electrically conductive porous structure. The energy storage capacity of the electrically conductive porous structure is then reduced until a predetermined energy storage capacity value is obtained.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: March 29, 2016
    Assignee: Intel Corporation
    Inventors: Eric C. Hannah, Cary L. Pint, Charles W. Holzwarth, John L. Gustafson
  • Publication number: 20150355343
    Abstract: Described is a chip comprising: a substrate; a logic unit forming an active circuit on the substrate; and a cosmic ray detector embedded in the substrate, the cosmic ray detector to detect a cosmic ray and to generate a signal indicating detection of the cosmic ray, the signal for reducing error in the logic unit.
    Type: Application
    Filed: August 18, 2015
    Publication date: December 10, 2015
    Inventor: Eric C. Hannah
  • Publication number: 20150294803
    Abstract: In one embodiment, a structure for a energy storage device may include at one polycrystalline substrate. The grain size may be designed to be at least a size at which phonon scattering begins to dominate over grain boundary scattering in the polycrystalline substrate. The structure also includes a porous structure containing multiple channels within the polycrystalline substrate.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 15, 2015
    Applicant: Intel Corporation
    Inventor: Eric C. Hannah
  • Patent number: 9110804
    Abstract: Described is a chip comprising: a substrate; a logic unit forming an active circuit on the substrate; and a cosmic ray detector embedded in the substrate, the cosmic ray detector to detect a cosmic ray and to generate a signal indicating detection of the cosmic ray, the signal for reducing error in the logic unit.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: August 18, 2015
    Assignee: Intel Corporation
    Inventor: Eric C. Hannah
  • Publication number: 20150187515
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Application
    Filed: March 11, 2015
    Publication date: July 2, 2015
    Applicant: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John Gustafson
  • Patent number: 9025313
    Abstract: In one embodiment, a structure for a energy storage device may include at one polycrystalline substrate. The grain size may be designed to be at least a size at which phonon scattering begins to dominate over grain boundary scattering in the polycrystalline substrate. The structure also includes a porous structure containing multiple channels within the polycrystalline substrate.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Intel Corporation
    Inventor: Eric C. Hannah
  • Patent number: 9013861
    Abstract: In one embodiment a charge storage device includes first (110) and second (120) electrically conductive structures separated from each other by a separator (130). At least one of the first and second electrically conductive structures includes a porous structure containing multiple channels (111, 121). Each one of the channels has an opening (112, 122) to a surface (115, 125) of the porous structure. In another embodiment the charge storage device includes multiple nanostructures (610) and an electrolyte (650) in physical contact with at least some of the nanostructures. A material (615) having a dielectric constant of at least 3.9 may be located between the electrolyte and the nanostructures.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: April 21, 2015
    Assignee: Intel Corporation
    Inventors: Donald S. Gardner, Eric C. Hannah, Rong Chen, John L. Gustafson
  • Publication number: 20140233152
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods may include forming an electrochemical capacitor device by forming pores in low-purity silicon materials. Various embodiments described herein enable the fabrication of high capacitive devices using low cost techniques.
    Type: Application
    Filed: December 27, 2011
    Publication date: August 21, 2014
    Inventors: Donald S. Gardner, Cary L. Pint, Charles W. Holzwarth, Wei Jin, Zhaohui Chen, Yang Liu, Eric C. Hannah, John L. Gustafson
  • Patent number: 8782437
    Abstract: An apparatus and method for protecting a content item such as a digitally encoded movie, an electronic programming guide, or the like, by reordering blocks of the content item prior to transmitting it to a receiving device. The receiving device constructs a block reordering structure which is used to access the reordered content item, to facilitate retrieval of a desired block from the original content item. The reordering may be done responsive to an identifier value of the receiving device, such as a serial number.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: July 15, 2014
    Assignee: Intel Corporation
    Inventors: Oleg Rashkovskiy, Eric C. Hannah
  • Publication number: 20140138555
    Abstract: Described is a chip comprising: a substrate; a logic unit forming an active circuit on the substrate; and a cosmic ray detector embedded in the substrate, the cosmic ray detector to detect a cosmic ray and to generate a signal indicating detection of the cosmic ray, the signal for reducing error in the logic unit.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Inventor: Eric C. Hannah