Patents by Inventor Eric C. Poblenz

Eric C. Poblenz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200160946
    Abstract: A longitudinal data quality assurance system is operable to receive a set of medical scans corresponding to a same first patient. A first chronologically ordered list of the set of medical scans is generated based on a corresponding first set of dates, where each of the corresponding first set of dates are extracted from a headers of the set of medical scans. Quality assurance data is generated for the first chronologically ordered list by performing at least one quality assurance function on at least one of the set of medical scans. A second chronologically ordered list that includes a first subset of the first set of medical scans is generated to rectify at least one continuity error of the first chronologically ordered list, indicated in the quality assurance data. The second chronologically ordered list is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 18, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Eric C. Poblenz, Li Yao, Keith Lui, Kevin Lyman
  • Publication number: 20200161005
    Abstract: A location-based medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans. Location-based subsets of the plurality of medical scans are generated by including ones of the plurality of medical scans with originating locations that compare favorably to location grouping criteria for the each location-based subset. A plurality of location-based models are generated by performing a fine-tuning step on the generic model, utilizing a corresponding one of the plurality of location-based subsets. Inference data is generated for a new medical scan by utilizing one of the location-based models on the new medical scan, where an originating location associated with the new medical scan compares favorably to location grouping criteria for the location-based subset utilized to generate the location-based model. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton
  • Publication number: 20200160978
    Abstract: An intensity transform augmentation system is operable to receive a training set of medical scans. Random intensity transformation function parameters are generated for each medical scan of the training set of medical scans. A plurality of augmented images are generated, where each of the plurality of augmented images is generated by performing a intensity transformation function on one of the training set of medical scans by utilizing the random intensity transform parameters generated for the one of the training set of medical scan. A computer vision model is generated by performing a training step on the plurality of augmented images. A new medical scan is received via the receiver. Inference data is generated by performing an inference function that utilizes the computer vision model on the new medical scan. The inference data is transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 21, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20200160520
    Abstract: A multi-model medical scan analysis system is operable to generate a generic model by performing a training step on image data of a plurality of medical scans and corresponding labeling data. A plurality of fine-tuned models corresponding to one of a plurality of abnormality types can be generated by performing a fine-tuning step on the generic model. Abnormality detection data can be generated for a new medical scan by performing utilizing the generic model. One of the plurality of abnormality types is determined to be detected in the new medical scan based on the abnormality detection data, and a fine-tuned model that corresponds to the abnormality type is selected. Additional abnormality data is generated for the new medical scan by utilizing the selected fine-tuned model. The additional abnormality data can be transmitted to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Jordan Prosky, Li Yao, Eric C. Poblenz, Kevin Lyman, Ben Covington, Anthony Upton
  • Publication number: 20200160971
    Abstract: A multi-model medical scan analysis system is operable to generate a plurality of training sets from a plurality of medical scans. Each of a set of sub-models can be generated by performing a training step on a corresponding one of the plurality of training sets. A subset of the set of sub-models is selected for a new medical scan. A set of abnormality data is generated by applying a subset of a set of inference functions on the new medical scan, where the subset of the set of inference functions utilize the subset of the set of sub-models. Final abnormality data is generated by performing a final inference function on the set of abnormality data. The final abnormality data can be to a client device for display via a display device.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 21, 2020
    Applicant: Enlitic, Inc.
    Inventors: Kevin Lyman, Li Yao, Eric C. Poblenz, Jordan Prosky, Ben Covington, Anthony Upton