Patents by Inventor Eric C. T. Harley

Eric C. T. Harley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577099
    Abstract: A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Veeraraghavan S. Basker, Eric C. T. Harley, Yue Ke, Alexander Reznicek, Henry K. Utomo
  • Patent number: 9536985
    Abstract: A method for producing a semiconductor structure, as well as a semiconductor structure, that uses a partial removal of an insulating layer around a semiconductor fin, and subsequently epitaxially growing an additional semiconductor material in the exposed regions, while maintaining the shape of the fin with the insulating layer.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: January 3, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael P. Chudzik, Brian J. Greene, Eric C. T. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Renee T. Mo, Yinxiao Yang
  • Patent number: 9466616
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Yue Ke, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20160268413
    Abstract: A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
    Type: Application
    Filed: March 9, 2015
    Publication date: September 15, 2016
    Inventors: Veeraraghavan S. Basker, Eric C. T. Harley, Yue Ke, Alexander Reznicek, Henry K. Utomo
  • Publication number: 20160181285
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Eric C.T. Harley, Judson R. Holt, Yue Ke, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20160163707
    Abstract: Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 9, 2016
    Inventors: Kangguo Cheng, Eric C.T. Harley, Judson R. Holt, Gauri V. Karve, Yue Ke, Derrick Liu, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek, Melissa Alyson Smith
  • Patent number: 9318608
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: April 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Yue Ke, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20160093740
    Abstract: The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Eric C. T. Harley, Judson R. Holt, Yue Ke, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek
  • Publication number: 20160093720
    Abstract: A method for producing a semiconductor structure, as well as a semiconductor structure, that uses a partial removal of an insulating layer around a semiconductor fin, and subsequently epitaxially growing an additional semiconductor material in the exposed regions, while maintaining the shape of the fin with the insulating layer.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 31, 2016
    Inventors: Michael P. Chudzik, Brian J. Greene, Eric C. T. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Renee T. Mo, Yinxiao Yang
  • Patent number: 9287264
    Abstract: Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: March 15, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kangguo Cheng, Eric C. T. Harley, Judson R. Holt, Gauri V. Karve, Yue Ke, Derrick Liu, Timothy J. McArdle, Shogo Mochizuki, Alexander Reznicek, Melissa A. Smith
  • Patent number: 8361859
    Abstract: An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Stephen W. Bedell, Abhishek Dube, Eric C. T. Harley, Judson R. Holt, Alexander Reznicek, Devendra K. Sadana, Dominic J. Schepis, Matthew W. Stoker, Keith H. Tabakman
  • Publication number: 20120228716
    Abstract: A structure including an NFET having an embedded silicon germanium (SiGe) plug in a channel of the NFET; a PFET having a SiGe channel; and a trench isolation between the NFET and the PFET, wherein the NFET and the PFET are devoid of SiGe epitaxial growth edge effects.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC., ADVANCED MICRO DEVICES, INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Patent number: 8232186
    Abstract: Methods of integrating reverse embedded silicon germanium (SiGe) on an NFET and SiGe channel on a PFET, and a related structure are disclosed. One method may include providing a substrate including an NFET area and a PFET area; performing a single epitaxial growth of a silicon germanium (SiGe) layer over the substrate; forming an NFET in the NFET area, the NFET including a SiGe plug in a channel thereof formed from the SiGe layer; and forming a PFET in the PFET area, the PFET including a SiGe channel formed from the SiGe layer. As an option, the SiGe layer over the PFET area may be thinned.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 31, 2012
    Assignees: International Business Machines Corporation, Globalfoundries
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter
  • Publication number: 20120112208
    Abstract: An embedded, strained epitaxial semiconductor material, i.e., an embedded stressor element, is formed at the footprint of at least one pre-fabricated field effect transistor that includes at least a patterned gate stack, a source region and a drain region. As a result, the metastability of the embedded, strained epitaxial semiconductor material is preserved and implant and anneal based relaxation mechanisms are avoided since the implants and anneals are performed prior to forming the embedded, strained epitaxial semiconductor material.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: International Business Machines Corporation
    Inventors: THOMAS N. ADAM, Stephen W. Bedell, Abhishek Dube, Eric C.T. Harley, Judson R. Holt, Alexander Reznicek, Devendra K. Sadana, Dominic J. Schepis, Matthew W. Stoker, Keith H. Tabakman
  • Patent number: 8084788
    Abstract: A semiconductor fabrication method involving the use of eSiGe is disclosed. The eSiGe approach is useful for applying the desired stresses to the channel region of a field effect transistor, but also can introduce complications into the semiconductor fabrication process. Embodiments of the present invention disclose a two-step fabrication process in which a first layer of eSiGe is applied using a low hydrogen flow rate, and a second eSiGe layer is applied using a higher hydrogen flow rate. This method provides a way to balance the tradeoff of morphology, and fill consistency when using eSiGe. Embodiments of the present invention promote a pinned morphology, which reduces device sensitivity to epitaxial thickness, while also providing a more consistent fill volume, amongst various device widths, thereby providing a more consistent eSiGe semiconductor fabrication process.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 27, 2011
    Assignee: International Business Machines Corporation
    Inventors: Judson Robert Holt, Abhishek Dube, Eric C. T. Harley, Shwu-Jen Jeng, Jeremy J Kempisty, Hasan Munir Nayfeh, Keith Howard Tabakman
  • Patent number: 8080451
    Abstract: Solutions for fabricating a semiconductor structure. One embodiment includes a method for fabricating a semiconductor structure, the method including: forming a first dielectric structure on a substrate, the first dielectric structure including silicon nitride (Si3N4); forming a second dielectric structure in proximity to the first dielectric structure; and growing a non-epitaxial thin film from a surface of the first dielectric structure; wherein the growing includes using a combination of precursor, carrier and etchant with a ratio among the precursor, carrier, and etchant being adjusted for selective growth of the thin film on the surface, and wherein the thin film includes one selected from a group consisting of: a monocrystalline material, an amorphous material, a polycrystalline material and a combination thereof.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: December 20, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Ashima B. Chakravarti, Eric C. T. Harley, Judson R. Holt
  • Publication number: 20100112762
    Abstract: Methods of fabricating a semiconductor structure with a non- epitaxial thin film disposed on a surface of a substrate of the semiconductor structure are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 6, 2010
    Inventors: Thomas N. Adam, Ashima B. Chakravarti, Eric C.T. Harley, Judson R. Holt
  • Publication number: 20100090288
    Abstract: A semiconductor fabrication method involving the use of eSiGe is disclosed. The eSiGe approach is useful for applying the desired stresses to the channel region of a field effect transistor, but also can introduce complications into the semiconductor fabrication process. Embodiments of the present invention disclose a two-step fabrication process in which a first layer of eSiGe is applied using a low hydrogen flow rate, and a second eSiGe layer is applied using a higher hydrogen flow rate. This method provides a way to balance the tradeoff of morphology, and fill consistency when using eSiGe. Embodiments of the present invention promote a pinned morphology, which reduces device sensitivity to epitaxial thickness, while also providing a more consistent fill volume, amongst various device widths, thereby providing a more consistent eSiGe semiconductor fabrication process.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Judson R. Holt, Abhishek Dube, Eric C.T. Harley, Shwu-Jen Jeng, Jeremy J. Kempisty, Hasan Munir Nayfeh, Keith Howard Tabakman
  • Patent number: 7687804
    Abstract: Methods of fabricating a semiconductor structure with a non-epitaxial thin film disposed on a surface of a substrate of the semiconductor structure; and semiconductor structures formed thereof are disclosed. The methods provide selective non-epitaxial growth (SNEG) or deposition of amorphous and/or polycrystalline materials to form a thin film on the surface thereof. The surface may be a non-crystalline dielectric material or a crystalline material. The SNEG on non-crystalline dielectric further provides selective growth of amorphous/polycrystalline materials on nitride over oxide through careful selection of precursors-carrier-etchant ratio. The non-epitaxial thin film forms resultant and/or intermediate semiconductor structures that may be incorporated into any front-end-of-the-line (FEOL) fabrication process.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: March 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Ashima B. Chakravarti, Eric C. T. Harley, Judson R. Holt
  • Publication number: 20090294801
    Abstract: Methods of integrating reverse embedded silicon germanium (SiGe) on an NFET and SiGe channel on a PFET, and a related structure are disclosed. One method may include providing a substrate including an NFET area and a PFET area; performing a single epitaxial growth of a silicon germanium (SiGe) layer over the substrate; forming an NFET in the NFET area, the NFET including a SiGe plug in a channel thereof formed from the SiGe layer; and forming a PFET in the PFET area, the PFET including a SiGe channel formed from the SiGe layer. As an option, the SiGe layer over the PFET area may be thinned.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Eric C. T. Harley, Judson R. Holt, Dominic J. Schepis, Michael D. Steigerwalt, Linda Black, Rick Carter