Patents by Inventor Eric Christopher Morton

Eric Christopher Morton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11874783
    Abstract: A coherent memory fabric includes a plurality of coherent master controllers and a coherent slave controller. The plurality of coherent master controllers each include a response data buffer. The coherent slave controller is coupled to the plurality of coherent master controllers. The coherent slave controller, responsive to determining a selected coherent block read command is guaranteed to have only one data response, sends a target request globally ordered message to the selected coherent master controller and transmits responsive data. The selected coherent master controller, responsive to receiving the target request globally ordered message, blocks any coherent probes to an address associated with the selected coherent block read command until receipt of the responsive data is acknowledged by a requesting client.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: January 16, 2024
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Amit P. Apte, Eric Christopher Morton, Ganesh Balakrishnan, Ann M. Ling
  • Patent number: 11809322
    Abstract: Systems, apparatuses, and methods for maintaining a region-based cache directory are disclosed. A system includes multiple processing nodes, with each processing node including a cache subsystem. The system also includes a cache directory to help manage cache coherency among the different cache subsystems of the system. In order to reduce the number of entries in the cache directory, the cache directory tracks coherency on a region basis rather than on a cache line basis, wherein a region includes multiple cache lines. Accordingly, the system includes a region-based cache directory to track regions which have at least one cache line cached in any cache subsystem in the system. The cache directory includes a reference count in each entry to track the aggregate number of cache lines that are cached per region. If a reference count of a given entry goes to zero, the cache directory reclaims the given entry.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: November 7, 2023
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Kevin M. Lepak, Amit P. Apte, Ganesh Balakrishnan, Eric Christopher Morton, Elizabeth M. Cooper, Ravindra N. Bhargava
  • Publication number: 20230195662
    Abstract: A coherent memory fabric includes a plurality of coherent master controllers and a coherent slave controller. The plurality of coherent master controllers each include a response data buffer. The coherent slave controller is coupled to the plurality of coherent master controllers. The coherent slave controller, responsive to determining a selected coherent block read command is guaranteed to have only one data response, sends a target request globally ordered message to the selected coherent master controller and transmits responsive data. The selected coherent master controller, responsive to receiving the target request globally ordered message, blocks any coherent probes to an address associated with the selected coherent block read command until receipt of the responsive data is acknowledged by a requesting client.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Amit P. Apte, Eric Christopher Morton, Ganesh Balakrishnan, Ann M. Ling
  • Patent number: 11675718
    Abstract: A computing system may implement a low priority arbitration interrupt method that includes receiving a message signaled interrupt (MSI) message from an input output hub (I/O hub) transmitted over an interconnect fabric, selecting a processor to interrupt from a cluster of processors based on arbitration parameters, and communicating an interrupt service routine to the selected processor, wherein the I/O hub and the cluster of processors are located within a common domain.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: June 13, 2023
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Eric Christopher Morton, Pravesh Gupta, Bryan P Broussard, Li Ou
  • Publication number: 20220309013
    Abstract: A computing system may implement a low priority arbitration interrupt method that includes receiving a message signaled interrupt (MSI) message from an input output hub (I/O hub) transmitted over an interconnect fabric, selecting a processor to interrupt from a cluster of processors based on arbitration parameters, and communicating an interrupt service routine to the selected processor, wherein the I/O hub and the cluster of processors are located within a common domain.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Inventors: Eric Christopher Morton, Pravesh Gupta, Bryan P Broussard, Li Ou
  • Patent number: 11341069
    Abstract: A method of operating a processing unit includes storing a first copy of a first interrupt control value in a cache device of the processing unit, receiving from an interrupt controller a first interrupt message transmitted via an interconnect fabric, where the first interrupt message includes a second copy of the first interrupt control value, and if the first copy matches the second copy, servicing an interrupt specified in the first interrupt message.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: May 24, 2022
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bryan P Broussard, Paul Moyer, Eric Christopher Morton, Pravesh Gupta
  • Publication number: 20220114123
    Abstract: A method of operating a processing unit includes storing a first copy of a first interrupt control value in a cache device of the processing unit, receiving from an interrupt controller a first interrupt message transmitted via an interconnect fabric, where the first interrupt message includes a second copy of the first interrupt control value, and if the first copy matches the second copy, servicing an interrupt specified in the first interrupt message.
    Type: Application
    Filed: October 12, 2020
    Publication date: April 14, 2022
    Inventors: Bryan P Broussard, Paul Moyer, Eric Christopher Morton, Pravesh Gupta
  • Publication number: 20220100686
    Abstract: Systems, apparatuses, and methods for routing interrupts on a coherency probe network are disclosed. A computing system includes a plurality of processing nodes, a coherency probe network, and one or more control units. The coherency probe network carries coherency probe messages between coherent agents. Interrupts that are detected by a control unit are converted into messages that are compatible with coherency probe messages and then routed to a target destination via the coherency probe network. Interrupts are generated with a first encoding while coherency probe messages have a second encoding. Cache subsystems determine whether a message received via the coherency probe network is an interrupt message or a coherency probe message based on an encoding embedded in the received message. Interrupt messages are routed to interrupt controller(s) while coherency probe messages are processed in accordance with a coherence probe action field embedded in the message.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: Vydhyanathan Kalyanasundharam, Eric Christopher Morton, Bryan P. Broussard, Paul James Moyer, William Louie Walker
  • Patent number: 11281280
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 22, 2022
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton
  • Publication number: 20210406180
    Abstract: Systems, apparatuses, and methods for maintaining a region-based cache directory are disclosed. A system includes multiple processing nodes, with each processing node including a cache subsystem. The system also includes a cache directory to help manage cache coherency among the different cache subsystems of the system. In order to reduce the number of entries in the cache directory, the cache directory tracks coherency on a region basis rather than on a cache line basis, wherein a region includes multiple cache lines. Accordingly, the system includes a region-based cache directory to track regions which have at least one cache line cached in any cache subsystem in the system. The cache directory includes a reference count in each entry to track the aggregate number of cache lines that are cached per region. If a reference count of a given entry goes to zero, the cache directory reclaims the given entry.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Vydhyanathan Kalyanasundharam, Kevin M. Lepak, Amit P. Apte, Ganesh Balakrishnan, Eric Christopher Morton, Elizabeth M. Cooper, Ravindra N. Bhargava
  • Patent number: 11210246
    Abstract: Systems, apparatuses, and methods for routing interrupts on a coherency probe network are disclosed. A computing system includes a plurality of processing nodes, a coherency probe network, and one or more control units. The coherency probe network carries coherency probe messages between coherent agents. Interrupts that are detected by a control unit are converted into messages that are compatible with coherency probe messages and then routed to a target destination via the coherency probe network. Interrupts are generated with a first encoding while coherency probe messages have a second encoding. Cache subsystems determine whether a message received via the coherency probe network is an interrupt message or a coherency probe message based on an encoding embedded in the received message. Interrupt messages are routed to interrupt controller(s) while coherency probe messages are processed in accordance with a coherence probe action field embedded in the message.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 28, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Eric Christopher Morton, Bryan P. Broussard, Paul James Moyer, William Louie Walker
  • Patent number: 11196657
    Abstract: A system for automatically discovering fabric topology includes at least one or more processing units, one or more memory devices, a security processor, and a communication fabric with an unknown topology coupled to the processing unit(s), memory device(s), and security processor. The security processor queries each component of the fabric to retrieve various attributes associated with the component. The security processor utilizes the retrieved attributes to create a network graph of the topology of the components within the fabric. The security processor generates routing tables from the network graph and programs the routing tables into the fabric components. Then, the fabric components utilize the routing tables to determine how to route incoming packets.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 7, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Eric Christopher Morton, Alan Dodson Smith, Joe G. Cruz
  • Patent number: 11119926
    Abstract: Systems, apparatuses, and methods for maintaining a region-based cache directory are disclosed. A system includes multiple processing nodes, with each processing node including a cache subsystem. The system also includes a cache directory to help manage cache coherency among the different cache subsystems of the system. In order to reduce the number of entries in the cache directory, the cache directory tracks coherency on a region basis rather than on a cache line basis, wherein a region includes multiple cache lines. Accordingly, the system includes a region-based cache directory to track regions which have at least one cache line cached in any cache subsystem in the system. The cache directory includes a reference count in each entry to track the aggregate number of cache lines that are cached per region. If a reference count of a given entry goes to zero, the cache directory reclaims the given entry.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: September 14, 2021
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Vydhyanathan Kalyanasundharam, Kevin M. Lepak, Amit P. Apte, Ganesh Balakrishnan, Eric Christopher Morton, Elizabeth M. Cooper, Ravindra N. Bhargava
  • Publication number: 20200387208
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton
  • Publication number: 20200259747
    Abstract: Systems, apparatuses, and methods for dynamic buffer management in multi-client token flow control routers are disclosed. A system includes at least one or more processing units, a memory, and a communication fabric with a plurality of routers coupled to the processing unit(s) and the memory. A router servicing multiple active clients allocates a first number of tokens to each active client. The first number of tokens is less than a second number of tokens needed to saturate the bandwidth of each client to the router. The router also allocates a third number of tokens to a free pool, with tokens from the free pool being dynamically allocated to different clients. The third number of tokens is equal to the difference between the second number of tokens and the first number of tokens. An advantage of this approach is reducing the amount of buffer space needed at the router.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 13, 2020
    Inventors: Alan Dodson Smith, Chintan S. Patel, Eric Christopher Morton, Vydhyanathan Kalyanasundharam, Narendra Kamat
  • Patent number: 10656696
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 19, 2020
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton
  • Patent number: 10608943
    Abstract: Systems, apparatuses, and methods for dynamic buffer management in multi-client token flow control routers are disclosed. A system includes at least one or more processing units, a memory, and a communication fabric with a plurality of routers coupled to the processing unit(s) and the memory. A router servicing multiple active clients allocates a first number of tokens to each active client. The first number of tokens is less than a second number of tokens needed to saturate the bandwidth of each client to the router. The router also allocates a third number of tokens to a free pool, with tokens from the free pool being dynamically allocated to different clients. The third number of tokens is equal to the difference between the second number of tokens and the first number of tokens. An advantage of this approach is reducing the amount of buffer space needed at the router.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 31, 2020
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Alan Dodson Smith, Chintan S. Patel, Eric Christopher Morton, Vydhyanathan Kalyanasundharam, Narendra Kamat
  • Publication number: 20200099993
    Abstract: Systems, apparatuses, and methods for processing multi-cast messages are disclosed. A system includes at least one or more processing units, one or more memory controllers, and a communication fabric coupled to the processing unit(s) and the memory controller(s). The communication fabric includes a plurality of crossbars which connect various agents within the system. When a multi-cast message is received by a crossbar, the crossbar extracts a message type indicator and a recipient type indicator from the message. The crossbar uses the message type indicator to determine which set of masks to lookup using the recipient type indicator. Then, the crossbar determines which one or more masks to extract from the selected set of masks based on values of the recipient type indicator. The crossbar combines the one or more masks with a multi-cast route to create a port vector for determining on which ports to forward the multi-cast message.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Vydhyanathan Kalyanasundharam, Joe G. Cruz, Eric Christopher Morton, Alan Dodson Smith
  • Publication number: 20200065275
    Abstract: Systems, apparatuses, and methods for routing interrupts on a coherency probe network are disclosed. A computing system includes a plurality of processing nodes, a coherency probe network, and one or more control units. The coherency probe network carries coherency probe messages between coherent agents. Interrupts that are detected by a control unit are converted into messages that are compatible with coherency probe messages and then routed to a target destination via the coherency probe network. Interrupts are generated with a first encoding while coherency probe messages have a second encoding. Cache subsystems determine whether a message received via the coherency probe network is an interrupt message or a coherency probe message based on an encoding embedded in the received message. Interrupt messages are routed to interrupt controller(s) while coherency probe messages are processed in accordance with a coherence probe action field embedded in the message.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Inventors: Vydhyanathan Kalyanasundharam, Eric Christopher Morton, Bryan P. Broussard, Paul James Moyer, William Louie Walker
  • Patent number: 10558591
    Abstract: Systems, apparatuses, and methods for implementing priority adjustment forwarding are disclosed. A system includes at least one or more processing units, a memory, and a communication fabric coupled to the processing unit(s) and the memory. The communication fabric includes a plurality of arbitration points. When a client determines that its bandwidth requirements are not being met, the client generates and sends an in-band priority adjustment request to the nearest arbitration point. This arbitration point receives the in-band priority adjustment request and then identifies any pending requests which are buffered at the arbitration point which meet the criteria specified by the in-band priority adjustment request. The arbitration point adjusts the priority of any identified requests, and then the arbitration point forwards the in-band priority adjustment request on the fabric to the next upstream arbitration point which processes the in-band priority adjustment request in the same manner.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: February 11, 2020
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Alan Dodson Smith, Eric Christopher Morton, Vydhyanathan Kalyanasundharam, Joe G. Cruz