Patents by Inventor Eric Clarkson

Eric Clarkson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11399713
    Abstract: Systems and methods for assessing multi-layer structures in which a spectrum array is generated from low coherence interferometry and input into a statistical estimator, which determines the thickness and layer number based on the inputted spectrum and other information, including information about a source intensity noise, Poisson noise, and dark noise associated with the low coherence interferometry.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: August 2, 2022
    Assignees: University of Rochester, The University of Arizona
    Inventors: Jinxin Huang, Jannick P. Rolland, Eric Clarkson, Matthew Kupinski
  • Publication number: 20170188815
    Abstract: Systems and methods for determining thickness of lipid and aqueous layers of a tear film in which a spectrum array is generated from optical coherence tomography and input into a statistical estimator, which determines the thickness of the lipid and/or aqueous layers at a nanometer resolution based on the inputted spectrum and other information, such as information about a laser intensity noise, Poisson noise, and dark noise associated with the OCT.
    Type: Application
    Filed: March 17, 2017
    Publication date: July 6, 2017
    Applicants: UNIVERSITY OF ROCHESTER, THE ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Jinxin Huang, Jannick P. Rolland, Eric Clarkson, Matthew Kupinski
  • Patent number: 9615735
    Abstract: Systems and methods for determining thickness of lipid and aqueous layers of a tear film in which a spectrum array is generated from optical coherence tomography and input into a statistical estimator, which determines the thickness of the lipid and/or aqueous layers at a nanometer resolution based on the inputted spectrum and other information, such as information about a laser intensity noise, Poisson noise, and dark noise associated with the OCT.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: April 11, 2017
    Assignees: University of Rochester, The Arizona Board of Regents on Behalf of The University of Arizona
    Inventors: Jinxin Huang, Jannick P. Rolland, Eric Clarkson, Matthew Kupinski
  • Publication number: 20150216407
    Abstract: Systems and methods for determining thickness of lipid and aqueous layers of a tear film in which a spectrum array is generated from optical coherence tomography and input into a statistical estimator, which determines the thickness of the lipid and/or aqueous layers at a nanometer resolution based on the inputted spectrum and other information, such as information about a laser intensity noise, Poisson noise, and dark noise associated with the OCT.
    Type: Application
    Filed: November 19, 2014
    Publication date: August 6, 2015
    Inventors: Jinxin Huang, Jannick P. Rolland, Eric Clarkson, Matthew Kupinski
  • Patent number: 6392235
    Abstract: A coded aperture is placed in proximity of a patient's body and a 2D coded image is acquired in conventional manner. The basic data-acquisition geometry is similar to that used in various coded-aperture systems. According to one aspect of the invention, additional coded images are acquired with different spacings between the aperture and the detector. Alternatively, additional coded images could be acquired with multiple movable apertures or by varying the location of the aperture relative to a patient. Another aspect of the invention resides in the recognition that presently available computer algorithms can process these multiple coded images in such a way as to estimate the integrals of the 3D object over a set of parallel cylindrical tubes extending through the volume of the target object. Such “tube integrals” can be thought of as the output of an ideal collimator where the sensitivity is confined to a tubular region of constant cross-section.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: May 21, 2002
    Assignee: The Arizona Board of Regents on behalf of The University of Arizona
    Inventors: Harrison H. Barrett, Eric Clarkson, Donald W. Wilson