Patents by Inventor Eric Cocker

Eric Cocker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200206682
    Abstract: A device controls levels of carbon dioxide and water in a controlled environment. The device comprises a first electrode chamber, which receives an input fluid comprising first concentrations of carbon dioxide and water and is configured to deliver a first output fluid having concentrations of carbon dioxide and water lower than the first concentrations to a first environment, and a second electrode chamber having an outlet configured to deliver a second output fluid having third concentrations of carbon dioxide and water to a second environment. A reduction catalyst layer in the first electrode chamber reduces carbon dioxide and water in the input fluid to form ionic carrier species, an ion-transporting membrane is positioned between the first and second electrode chambers and comprises carrier species, and an oxidation catalyst layer in the second electrode chamber oxidizes the ionic carrier species to form carbon dioxide and water.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Inventors: Divyaraj Desai, Mahati Chintapalli, Jessica Louis Baker Rivest, Eric Cocker
  • Publication number: 20200200684
    Abstract: A colorimetric sensor has a first material deposited on a surface, and sensing particles on a surface of the first material, wherein the sensing particles comprise sensing species dispersed into porous host structures, such that at least a portion of the sensing particles is exposed to an ambient environment, wherein the first material attaches the sensing particles to surface. A method of forming a colorimetric sensor including depositing a first material onto a substrate, providing porous sensing particles, wherein the sensing particles comprise sensing species dispersed into a porous host structure, and embedding the porous sensing particles onto a surface of the deposited first material, wherein the first material attaches the sensing particles to the substrate such that at least a portion of the sensing particles is exposed to an ambient environment.
    Type: Application
    Filed: December 20, 2018
    Publication date: June 25, 2020
    Inventors: GABRIEL IFTIME, MAHATI CHINTAPALLI, ELI BURGER, WARREN JACKSON, SEAN EMERSON DORIS, JESSICA LOUIS BAKER RIVEST, ERIC COCKER, ANTONIO WILLIAMS, CRYSTAL PHAM
  • Publication number: 20190241883
    Abstract: A catalyst having a porous support having at least one of thermally or electrically conductive particles bonded by a polymer, and enzymes embedded into pores of the porous support. A process of manufacturing an enzyme-embedded porous support includes forming solution of monomers, enzymes, a solvent, and at least one of electrically and thermally conductive particles, polymerizing the monomers by adding initiators to the solution, and evaporating the solvent to produce an enzyme-embedded porous support. A process of manufacturing an enzyme embedded porous support, includes mixing enzymes, at least one of electrically conductive or thermally conductive particles, and a polymer in a solvent, and evaporating the solvent.
    Type: Application
    Filed: September 10, 2018
    Publication date: August 8, 2019
    Inventors: GABRIEL IFTIME, ERIC COCKER, SEAN GARNER, JESSICA LOUIS BAKER RIVEST
  • Publication number: 20190194019
    Abstract: Disclosed are methods and systems of providing carbon nanotubes decorated with polymer coated metal nanoparticles. Then, annealing the metal coated carbon nanotubes to reduce a quantity of hydrophilic components of the polymer coating.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Gabriel Iftime, Beomseok Kim, Clinton Smith, Eric Cocker, Junhua Wei, David Eric Schwartz, Meyya Meyyappan, Rahul Pandey, Yong Zhang
  • Publication number: 20190187062
    Abstract: A sensor has a transparent polymer aerogel, and sensing materials dispersed into the transparent, polymer aerogel, where the sensing materials change color in response to environmental conditions. A method of forming a sensor includes providing a substrate, forming a polymer aerogel layer on the substrate, and infusing the polymer aerogel layer with sensing molecules.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 20, 2019
    Inventors: GABRIEL IFTIME, JESSICA LOUIS BAKER RIVEST, GEORGE A. GIBSON, ERIC COCKER, MAHATI CHINTAPALLI, QUENTIN VAN OVERMEERE
  • Publication number: 20190128827
    Abstract: A gas monitor apparatus includes a sorbent material that adsorbs a target gas based on a concentration of the target gas in a monitored environment and a reference material that does not respond to the target gas. The gas monitor also includes a first thermistor disposed within the sorbent material and a second thermistor disposed within the reference material, the first thermistor to provide a first indication of a first temperature of the sorbent material and the second thermistor to provide a second indication of a second temperature of the reference material. A processing device determines a concentration of the target gas based at least in part on a differential measurement between the first temperature and the second temperature.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 2, 2019
    Inventors: Jianer Bao, Clinton Smith, Eric Cocker, David Schwartz
  • Publication number: 20180335516
    Abstract: An apparatus including an antenna and a processing device. The antenna includes a steerable array. The steerable array may transmit a signal at an angle of transmission toward a portion of an object. The steerable array may receive a reflection of the signal off of the portion of the object. The processing device may be coupled to the antenna. The processing device may determine a digital representation of the portion of the object in view of the reflection of the signal.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 22, 2018
    Inventors: George Daniel, Bernard D. Casse, Eric Cocker
  • Publication number: 20180217364
    Abstract: The invention provides miniaturized devices, systems and methods for imaging of biological specimens. The devices and system provide accurate alignment and modular mounting of imaging components internally and in relation to the target subject. In some embodiments, the invention provides devices, systems and methods for in vivo fluorescent brain imaging in freely-behaving rodents.
    Type: Application
    Filed: August 21, 2017
    Publication date: August 2, 2018
    Inventors: Eric COCKER, Kunal GHOSH
  • Publication number: 20170296060
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: February 27, 2017
    Publication date: October 19, 2017
    Inventors: Kunal Ghosh, Laurie D. Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9629554
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 25, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9498135
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: November 22, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9474448
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: October 25, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160029893
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160033752
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20160004063
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Patent number: 9195043
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho
  • Publication number: 20150309295
    Abstract: The invention provides miniaturized devices, systems and methods for imaging of biological specimens. The devices and system provide accurate alignment and modular mounting of imaging components internally and in relation to the target subject. In some embodiments, the invention provides devices, systems and methods for in vivo fluorescent brain imaging in freely-behaving rodents.
    Type: Application
    Filed: November 5, 2013
    Publication date: October 29, 2015
    Applicant: INSCOPIX, INAC.
    Inventors: Eric COCKER, Kunal GHOSH
  • Publication number: 20130260382
    Abstract: Systems and methods are provided for imaging a sample. A portable slide reader may be provided that may be configured to accept a slide and that may contain one or more miniature microscopes therein. The slide reader may include a display showing images captured by the microscopes. The slide may be movable relative to the microscopes and the position of the captured image may be controllable. In some instances, images captured may be useful for DNA sequencing. Multiple color ranges may be captured for a target region, corresponding to different nucleobases.
    Type: Application
    Filed: February 14, 2013
    Publication date: October 3, 2013
    Inventors: Kunal Ghosh, Eric Cocker, Mark J. Schnitzer
  • Publication number: 20120062723
    Abstract: Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 ?m resolution for an image of the field of view.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 15, 2012
    Inventors: Kunal Ghosh, Laurie Burns, Abbas El Gamal, Mark J. Schnitzer, Eric Cocker, Tatt Wei Ho