Patents by Inventor Eric E. Adam

Eric E. Adam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964459
    Abstract: A system and method for removing a backing from a ply of composite material is disclosed. The system includes a roller having a roller axis and a roller surface that circumscribes the roller axis. The system also includes an adhesion feature disposed on the roller surface. The system further includes a roller drive to move the roller along a travel path that is perpendicular to the roller axis and to rotate the roller about the roller axis.
    Type: Grant
    Filed: October 14, 2022
    Date of Patent: April 23, 2024
    Assignee: The Boeing Company
    Inventors: Travis R. Adams, Charles A. Rhodes, Benjamin Richards, Juliette Dubon, Adam Martinez, Eric E. Moyes, Timothy J. Luchini, Augustus J. Ellis
  • Publication number: 20240123723
    Abstract: A system and method for removing a backing from a ply of composite material is disclosed. The system includes a roller having a roller axis and a roller surface that circumscribes the roller axis. The system also includes an adhesion feature disposed on the roller surface. The system further includes a roller drive to move the roller along a travel path that is perpendicular to the roller axis and to rotate the roller about the roller axis.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Applicant: The Boeing Company
    Inventors: Travis R. Adams, Charles A. Rhodes, Benjamin Richards, Juliette Dubon, Adam Martinez, Eric E. Moyes, Timothy J. Luchini, Augustus J. Ellis
  • Publication number: 20240108334
    Abstract: Methods, devices, and systems for controlling a tissue-treatment motion by a surgical instrument are disclosed.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Taylor W. Aronhalt, Michael J. Vendely, Shane R. Adams, Nicholas J. Ross, Matthew D. Cowperthwait, Jason L. Harris, Kevin M. Fiebig, Eric B. LaFay, Jose Luis De Cordoba Matilla, Raymond E. Parfett, Curtis A. Maples, Sarah A. Worthington, Jacqueline C. Aronhalt
  • Publication number: 20240108329
    Abstract: A surgical instrument system comprising a motor system and a control circuit is disclosed. The motor system comprises a motor and a drive train coupleable to the motor and configured to actuate a firing member through a staple firing stroke. The control circuit is coupled to the motor, wherein the control circuit comprises a motor controller configured to control the motor, and wherein, during the staple firing stroke, the control circuit is configured to actuate the firing member through the staple firing stroke, monitor a parameter of the motor system during the staple firing stroke, identify when the firing member is within an active adjustment portion of the staple firing stroke; and automatically adjust, at a frequency, tuning parameters of the motor controller with based on the monitored parameter of the motor system during the active adjustment portion of the staple firing stroke.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Matthew D. Cowperthwait, Nicholas J. Ross, Shane R. Adams, Eric B. LaFay, Sarah A. Worthington
  • Publication number: 20240108338
    Abstract: A surgical stapling system includes a motor, a gear reducer assembly, a drive train, and a motor controller. A method of controlling the motor includes applying a first signal to the motor, receiving drive train operational data, comparing the drive train data to baseline data, and applying a signal having a different shape than the first signal to the motor. A method of characterizing the motor includes transmitting a perturbation signal, receiving motor function parameters, determining stapler system characteristics, and adjusting a controller function. A method of controlling a stepper motor includes applying a signal to the stepper motor, receiving stepper motor operational data, comparing the data to baseline data, and adjusting the signal. Another method of controlling the motor includes receiving motor rotational data, receiving gear rotation data, calculating a mechanical transfer function, determining non-idealities of the stapling system, and modifying a control signal based on the non-idealities.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Frederick E. Shelton, IV, Shane R. Adams, Eric B. LaFay, Taylor W. Aronhalt, Jose Luis De Cordoba Matilla, Nicholas J. Ross, Matthew D. Cowperthwait
  • Patent number: 7157224
    Abstract: In accordance with the present invention, there are provided selection systems and methods for screening for agents that control splicing of inteins in their native host protein (extein) or in homologous exteins. Specifically, there are provided positive genetic selection systems for the screening of agents which inhibit or activate protein splicing which comprise: a host cell containing a chromosomal gene encoding either a drug-resistant form of a target enzyme or a wild-type target enzyme, and a plasmid-borne gene encoding either a drug-sensitive form of the target enzyme, which is dominantly cytotoxic upon interaction with the drug, or a dominantly cytotoxic form of the target enzyme. In these systems the plasmid-borne gene contains an intein, and the inhibition or activation of splicing of the dominant cytotoxic form of the target enzyme by a given reagent results in the survival or death of the host cell. More specifically, positive genetic selection systems which utilize the M. xenopi GyrA intein or M.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 2, 2007
    Assignee: New England Biolabs, Inc.
    Inventors: Francine B. Perler, Eric E. Adam
  • Publication number: 20030143522
    Abstract: In accordance with the present invention, there are provided selection systems and methods for screening for agents that control splicing of inteins in their native host protein (extein) or in homologous exteins. Specifically, there are provided positive genetic selection systems for the screening of agents which inhibit or activate protein splicing which comprise: a host cell containing a chromosomal gene encoding either a drug-resistant form of a target enzyme or a wild-type target enzyme, and a plasmid-borne gene encoding either a drug-sensitive form of the target enzyme, which is dominantly cytotoxic upon interaction with the drug, or a dominantly cytotoxic form of the target enzyme. In these systems the plasmid-borne gene contains an intein, and the inhibition or activation of splicing of the dominant cytotoxic form of the target enzyme by a given reagent results in the survival or death of the host cell. More specifically, positive genetic selection systems which utilize the M. xenopi GyrA intein or M.
    Type: Application
    Filed: December 18, 2002
    Publication date: July 31, 2003
    Inventors: Francine B. Perler, Eric E. Adam
  • Patent number: 6521425
    Abstract: In accordance with the present invention, there are provided selection systems and methods for screening for agents that control splicing of inteins in their native host protein (extein) or in homologous exteins. Specifically, there are provided positive genetic selection systems for the screening of agents which inhibit or activate protein splicing which comprise: a host cell containing a chromosomal gene encoding either a drug-resistant form of a target enzyme or a wild-type target enzyme, and a plasmid-borne gene encoding either a drug-sensitive form of the target enzyme, which is dominantly cytotoxic upon interaction with the drug, or a dominantly cytotoxic form of the target enzyme. In these systems the plasmid-borne gene contains an intein, and the inhibition or activation of splicing of the dominant cytotoxic form of the target enzyme by a given reagent results in the survival or death of the host cell. More specifically, positive genetic selection systems which utilize the M. xenopi GyrA intein or M.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: February 18, 2003
    Assignee: New England Biolabs, Inc.
    Inventors: Francine B. Perler, Eric E. Adam
  • Publication number: 20020142296
    Abstract: In accordance with the present invention, there are provided selection systems and methods for screening for agents that control splicing of inteins in their native host protein (extein) or in homologous exteins. Specifically, there are provided positive genetic selection systems for the screening of agents which inhibit or activate protein splicing which comprise: a host cell containing a chromosomal gene encoding either a drug-resistant form of a target enzyme or a wild-type target enzyme, and a plasmid-borne gene encoding either a drug-sensitive form of the target enzyme, which is dominantly cytotoxic upon interaction with the drug, or a dominantly cytotoxic form of the target enzyme. In these systems the plasmid-borne gene contains an intein, and the inhibition or activation of splicing of the dominant cytotoxic form of the target enzyme by a given reagent results in the survival or death of the host cell. More specifically, positive genetic selection systems which utilize the M. xenopi GyrA intein or M.
    Type: Application
    Filed: October 29, 1999
    Publication date: October 3, 2002
    Inventors: FRANCINE B. PERLER, ERIC E. ADAM