Patents by Inventor Eric E. Krueger

Eric E. Krueger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123957
    Abstract: A braking system includes: brake circuits independently activated and deactivated and when activated apply braking force at respective wheels; a braking stability module detecting an issue or a failure with a first one of the brake circuits where an unexpected amount of braking torque is being applied as compared to an amount of braking torque applied at a second one of the brake circuits, and mitigating effect of the unexpected amount of braking torque on a yaw rate of the vehicle by i) adjusting the braking torque of the first one of the brake circuits, ii) adjusting braking torque of the second one of the brake circuits, and/or iii) deactivating the first one of the brake circuits and modulating braking torque of the second one of the brake circuits, to compensate for the unexpected amount of braking torque.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 18, 2024
    Inventors: Edward Thomas HEIL, Matthew Allen ROBERE, Eric E. KRUEGER
  • Publication number: 20240094233
    Abstract: The present invention relates to methods, devices and systems for associating consumable data with an assay consumable used in a biological assay. Provided are assay systems and associated consumables, wherein the assay system adjusts one or more steps of an assay protocol based on consumable data specific for that consumable. Various types of consumable data are described, as well as methods of using such data in the conduct of an assay by an assay system. The present invention also relates to consumables (e.g., kits and reagent containers), software, data deployable bundles, computer-readable media, loading carts, instruments, systems, and methods, for performing automated biological assays.
    Type: Application
    Filed: July 18, 2023
    Publication date: March 21, 2024
    Inventors: Jacob N. WOHLSTADTER, Manish KOCHAR, Peter J. BOSCO, Ian D. CHAMBERLIN, Bandele JEFFREY-COKER, Eric M. JONES, Gary I. KRIVOY, Don E. KRUEGER, Aaron H. LEIMKUEHLER, Pei-Ming WU, Kim-Xuan NGUYEN, Pankaj OBEROI, Louis W. PANG, Jennifer PARKER, Victor PELLICIER, Nicholas SAMMONS, George SIGAL, Michael L. VOCK, Stanley T. SMITH, Carl C. STEVENS, Rodger D. OSBORNE, Kenneth E. PAGE, Michael T. WADE, Jon WILLOUGHBY, Lei WANG, Xinri CONG, Kin NG
  • Publication number: 20240001770
    Abstract: In accordance with exemplary embodiments, methods and systems are provided for controlling regenerative braking of a vehicle is provided that include: obtaining, via one or more sensors of the vehicle, sensor data pertaining to a load on the vehicle during a particular vehicle drive; determining, via a processor of the vehicle, a maximum regenerative braking torque for the vehicle for the particular vehicle drive based on the load on the vehicle; and controlling the regenerative braking of the vehicle during the particular vehicle drive, via instructions provided by the processor, based on the maximum regenerative braking torque for the vehicle for the particular vehicle drive.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Matthew Allen Robere, Eric E. Krueger, Arthur D. Drennen, Michael F. O'leary
  • Patent number: 10688975
    Abstract: The present application generally relates to a method and apparatus for application of a park hold assist system in a motor vehicle. In particular, the system is operative to receive an activation signal and to determine that the vehicle is in a park hold assist condition, such as inclined road surface, attached trailer or wheel rotation while transmission is in the park position. The system is operative to apply the hydraulic brakes in response to this condition thereby engaging a brake mechanism on all wheels.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 23, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Todd J. Brinkman, John W. Pennala, Eric E. Krueger, Harold B. Thibodeau, Frank R. Bruneel, II
  • Patent number: 10670445
    Abstract: System and method for controlling operation of a vehicle having a fluid reservoir. The system includes one or more fluid level indicators configured to respectively obtain a measured fluid level in the fluid reservoir. A plurality of sensors is operatively connected to the vehicle and configured to respectively obtain one or more parameters. A controller is configured to determine if a fluid level transition between the measured fluid level and a past fluid level is indicated, when there is exactly one fluid level indicator. The controller is configured to identify a reporting state from among a first state, a second state and a third state, based in part on a correlation to a dynamic event and an expected direction for the fluid level transition. A control action is executed by the controller based in part on the reporting state.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: June 2, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Edward T. Heil, Kevin G. Weishuhn, Sean E. Zuzga, Eric E. Krueger, Steven J. Weber
  • Patent number: 10525957
    Abstract: A vehicle includes a plurality of brake assemblies configured to control braking of a respective wheel of the vehicle. The brake assemblies includes a first brake assembly integrated with a smart actuator unit including a first actuator controller and a first electro-mechanical actuator that is configured to adjust a brake force applied to a first wheel coupled to the first brake assembly. A second brake assembly excludes an actuator controller and has installed therein a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel coupled to the second brake assembly. At least one electronic actuator driver unit is remotely located from the first and second brake assemblies, and is configured to output a high-power signal that drives the first and second electro-mechanical actuators in response to receiving a digital command signal from the first actuator controller.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 7, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan J. Houtman, Christopher C. Chappell, Kevin S. Kidston, Paul A. Kilmurray, Eric E. Krueger, Patrick J. Monsere, Brandon C. Pennala, Michael C. Roberts, Steven J. Weber
  • Patent number: 10507816
    Abstract: A vehicle with a fault tolerant electronic brake-by-wire (BBW) system includes a plurality of brake assemblies that control braking of a respective wheel of the vehicle. The brake assemblies include a first brake assembly and a second brake assembly. The first brake assembly is integrated with at least one enhanced brake actuator assembly including a first electronic actuator driver circuit in signal communication with a first electro-mechanical actuator. The first brake assembly is configured to adjust a brake force applied to a first wheel of the vehicle. The second brake assembly is integrated with at least one enhanced smart brake actuator assembly including a first actuator controller in signal communication with a second electronic actuator driver circuit. The second electronic actuator driver circuit is in signal communication with a second electro-mechanical actuator that is configured to adjust a brake force applied to a second wheel of the vehicle.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 17, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Paul A. Kilmurray, Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Steven J. Weber
  • Patent number: 10501063
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electrical power circuits. Each brake assembly includes an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The electrical power circuits are located remotely from one another. Each power circuit is configured to drive a respective actuator. The vehicle further includes a first electronic brake system (EBS) controller and a second EBS controller. The first EBS controller is configured to output a first data command signal to control a first group of power circuits among the plurality of power circuits. The second EBS controller is configured to output a second data command signal to control a second group of power circuits among the plurality of power circuits. The second group excludes the power circuits from the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 10, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Brandon C. Pennala, Christopher C. Chappell, Alan J. Houtman, Kevin S. Kidston, Patrick J. Monsere, Michael C. Roberts, Paul A. Kilmurray, Steven J. Weber
  • Publication number: 20190366990
    Abstract: The present application generally relates to a method and apparatus for application of a park hold assist system in a motor vehicle. In particular, the system is operative to receive an activation signal and to determine that the vehicle is in a park hold assist condition, such as inclined road surface, attached trailer or wheel rotation while transmission is in the park position. The system is operative to apply the hydraulic brakes in response to this condition thereby engaging a brake mechanism on all wheels.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 5, 2019
    Inventors: Todd J. Brinkman, John W. Pennala, Eric E. Krueger, Harold B. Thibodeau, Frank R. Bruneel II
  • Patent number: 10377358
    Abstract: Systems and methods are provided for controlling a vehicle using a specific torque of a brake system. In one embodiment, a method of using a specific torque of a brake system for a vehicle includes: determining a brake pressure of the brake system during a braking operation; determining a deceleration of the vehicle during the braking operation; determining a vehicle mass and a wheel radius; estimating a specific torque of the brake system based on the brake pressure and the deceleration; and operating the vehicle based on the specific torque.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 13, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Eric E. Krueger, Patrick J. Monsere, Edward T. Heil, Robert L. Nisonger, Constandi J. Shami, Alan J. Houtman
  • Patent number: 10336317
    Abstract: Methods, systems, and vehicles are provided for controlling lift for vehicles. In accordance with one embodiment, a vehicle includes a body, one or more sensors, and a processor. The one or more sensors are configured to measure values pertaining to one or more parameter values for a vehicle during operation of the vehicle. The processor is coupled to the one or more sensors, and is configured to at least facilitate determining whether an unplanned lift of the body of the vehicle is likely using the parameters, and implementing one or more control measures when it is determined that the unplanned lift of the body of the vehicle is likely.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: July 2, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jason D. Fahland, Joshua R. Auden, David Dominguez, Samantha J. Bray, Eric E. Krueger
  • Patent number: 10166954
    Abstract: A brake pedal assembly of a brake-by-wire system of a vehicle includes a support structure, a brake pedal pivotally engaged to the support structure at a first pivot axis, and a brake pedal emulator assembly. The brake pedal emulator assembly extends between and is pivotally engaged to the brake pedal and the support structure at respective second and third pivot axis. The brake pedal emulator assembly includes a brake pedal emulator and an adjustment mechanism aligned along a centerline intersecting the second and third pivot axis. The brake pedal emulator is constructed and arranged to displace axially when the brake pedal is actuated, and the adjustment mechanism is constructed and arranged to adjust axial displacement.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 1, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan J. Houtman, Brandon C. Pennala, Paul A. Kilmurray, Eric E. Krueger
  • Patent number: 10166985
    Abstract: Systems and method are provided for controlling a vehicle. In one embodiment, a method includes: receiving, by a processor, at least one of state health and performance information associated with at least one vehicle actuator; processing, by the processor, the state of health and performance information to determine an acceleration value; and controlling the vehicle based on the acceleration value.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 1, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Eric E. Krueger, Robert L. Nisonger, Edward T. Heil, Brandon C. Pennala, Patrick J. Monsere
  • Publication number: 20180345973
    Abstract: A vehicle and method is provided. The vehicle includes systems and method for limiting the slip of the wheels. In an embodiment, the system holds the brakes based on an acceleration characteristic measured by a sensor. In another embodiment, the system includes a transmission controller that applies an adjustment to limit an amount of clutch slip as the clutch temperature to change in clutch performance to reduce wheel slip. In another embodiment, the system monitors wheel slip signal from a sensor and compares the wheel slip to a target slip value and controls clutch slip of the transmission clutch based to maintain engine output torque during acceleration. In another embodiment, in response to an anticipated vehicle launch event, a drive motor applies a first torque to the input shaft to adjust a gear lash of the differential unit.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 6, 2018
    Inventors: Eric E. Krueger, Alexander J. MacDonald, Michael G. Petrucci, Anthony J. Rifici, Ryan Z. Goode, Aniket Kothari, Jonathan P. Kish
  • Publication number: 20180345920
    Abstract: A vehicle having an electronic parking brake system is provided. The vehicle includes a braking system having a first rotor and a first caliper. An electric motor is coupled to operate the first caliper. At least one sensor coupled to the vehicle to determine a braking characteristic. A controller electrically is coupled to the electric motor and the at least one sensor, the controller transmitting a first signal to the electric motor in response to receiving a second signal from the at least one sensor and determining that the braking system is performing below a predetermined level, the electric motor actuating the first caliper to apply a clamping force on the first rotor in response to the first signal.
    Type: Application
    Filed: September 8, 2016
    Publication date: December 6, 2018
    Inventors: Eric E. Krueger, Steven J. Weber, Brian W. Quinn, James A. Webster
  • Patent number: 10144402
    Abstract: A vehicle includes a plurality of brake assemblies and a plurality of electronic brake system (EBS) controllers. The brake assemblies each include an electro-mechanical actuator configured to adjust a torque force applied to a wheel of the vehicle. The EBS controllers are located remotely from one another. Each EBS controller has integrated therein an electronic actuator driver unit that includes an electronic power circuit configured to drive at least one of the electro-mechanical actuators. A first EBS controller is configured to drive a first group of electro-mechanical actuators, and a second EBS controller is configured to drive a second group of electro-mechanical actuators that exclude the electro-mechanical actuators of the first group.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: December 4, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Brandon C. Pennala, Christopher C. Chappell, Paul A. Kilmurray, Patrick J. Monsere, Eric E. Krueger, Alan J. Houtman, Kevin S. Kidston, Michael C. Roberts, Steven J. Weber
  • Patent number: 10106141
    Abstract: Systems and methods are provided testing a vehicle braking system. The method includes determining a nominal brake system parameter of the brake system during a braking operation. A first testing brake operation is performed and a first brake system parameter is determined based on the first testing brake operation. A tested brake system parameter is determined based on the first testing system parameter and the tested brake system parameter is compared to the nominal brake system parameter. A brake system compliance suspicion value of the vehicle braking system is then set based on the comparison.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 23, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Edward T. Heil, Eric E. Krueger, Joshua R. Auden, Robert L. Nisonger, Patrick J. Monsere, Brandon C. Pennala, Constandi J. Shami
  • Publication number: 20180265068
    Abstract: Systems and methods are provided testing a vehicle braking system. The method includes determining a nominal brake system parameter of the brake system during a braking operation. A first testing brake operation is performed and a first brake system parameter is determined based on the first testing brake operation. A tested brake system parameter is determined based on the first testing system parameter and the tested brake system parameter is compared to the nominal brake system parameter. A brake system compliance suspicion value of the vehicle braking system is then set based on the comparison.
    Type: Application
    Filed: March 20, 2017
    Publication date: September 20, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: EDWARD T. HEIL, ERIC E. KRUEGER, JOSHUA R. AUDEN, ROBERT L. NISONGER, PATRICK J. MONSERE, BRANDON C. PENNALA, CONSTANDI J. SHAMI
  • Publication number: 20180257477
    Abstract: A vehicle includes a first axle system operatively connected to a first set of wheels, a second axle system operatively connected to a second set of wheels, a first drive system operatively connected to the first set of wheels, a second drive system operatively connected to the second set of wheels independent of the first set of wheels, and a traction management control module electrically coupled to at least one of the first and second drive systems. The traction management control module calculates a torque capability of the corresponding one of the first and second axle systems and selectively transmits an axle torque command to the corresponding one of the first and second axle systems based on the torque capability.
    Type: Application
    Filed: September 9, 2016
    Publication date: September 13, 2018
    Inventors: Eric E. KRUEGER, Xiaofeng MAO, Kevin A. O'DEA
  • Patent number: D1016674
    Type: Grant
    Filed: September 23, 2022
    Date of Patent: March 5, 2024
    Assignee: NATIONAL ASSOCIATION FOR STOCK CAR AUTO RACING, LLC
    Inventors: Brandon Thomas, John Probst, Eric Jacuzzi, Christopher A. Popiela, Timothy S. Murphy, Donald E. Krueger