Patents by Inventor Eric Earl
Eric Earl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240337718Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan. One method includes receiving a data frame from the MRI system performing the MRI scan of the patient, comparing the data frame to a reference image to assess motion of a body part of the patient during the MRI scan, generating stimulus to be communicated to the patient during the MRI scan based on a task of the MRI scan and the motion of the body part of the patient during the MRI scan, adjusting the stimulus during the MRI scan to adjust the task and as the motion of the body part of the patient changes, and communicating the stimulus to the patient during the MRI scan, wherein the sensory feedback includes at least one of a game, a movie, a cartoon, a shape, or an auditory signal.Type: ApplicationFiled: June 17, 2024Publication date: October 10, 2024Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Patent number: 12050257Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: GrantFiled: December 2, 2022Date of Patent: July 30, 2024Assignees: Washington University, Oregon Health and Science UniversityInventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Publication number: 20230121804Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: ApplicationFiled: December 2, 2022Publication date: April 20, 2023Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Patent number: 11543483Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: GrantFiled: October 20, 2021Date of Patent: January 3, 2023Assignees: Washington University, Oregon Health & Science UniversityInventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Publication number: 20220034986Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: ApplicationFiled: October 20, 2021Publication date: February 3, 2022Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Patent number: 11181599Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: GrantFiled: March 8, 2018Date of Patent: November 23, 2021Assignees: Washington University, Oregon Health and Science UniversityInventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Publication number: 20200225308Abstract: Methods, computer-readable storage devices, and systems are described for reducing movement of a patient undergoing a magnetic resonance imaging (MRI) scan by aligning MRI data, the method implemented on a Framewise Integrated Real-time MRI Monitoring (“FIRMM”) computing device including at least one processor in communication with at least one memory device. Aspects of the method comprise receiving a data frame from the MRI system, aligning the received data frame to a preceding data frame, calculating motion of a body part between the received data frame and the preceding data frame, calculating total frame displacement, and excluding data frames with a cutoff above a pre-identified threshold of the total frame displacement.Type: ApplicationFiled: March 8, 2018Publication date: July 16, 2020Inventors: Nico Dosenbach, Jonathan Koller, Andrew Van, Abraham Snyder, Amy Mirro, Damien Fair, Eric Earl, Rachel Klein, Oscar Miranda Dominguez, Anders Perrone
-
Publication number: 20160191331Abstract: An exemplary embodiment of the present invention provides a method of generating a representation of a storage network. The method includes generating a tree model representation of a storage network, the tree model comprising a plurality of nodes, wherein each node represents a portion of the storage network currently being displayed on a display device. The method also includes receiving a request from a client system to view contents of a node in the tree model. The method also includes, in response to the request, obtaining tree information for the node in the request, the tree information related to an additional portion of the storage network not being displayed. The method also includes adding an additional node to the tree model based on the tree information and displaying the additional portion of the storage network that is represented by the additional node.Type: ApplicationFiled: March 4, 2016Publication date: June 30, 2016Inventors: Eric Earl Johnson, Jefferson Nathan Lee, Timothy L. Virgo, Travis J. Feuling, Todd E. Barkalow
-
Patent number: 9311319Abstract: An exemplary embodiment of the present invention provides a method of generating a representation of a storage network. The method includes obtaining an request from a client system to view contents of a node in a tree model. The method also includes receiving tree information corresponding to the node and adding the tree information to the tree model.Type: GrantFiled: August 27, 2009Date of Patent: April 12, 2016Assignee: Hewlett Packard Enterprise Development LPInventors: Eric Earl Johnson, Jefferson Nathan Lee, Timothy L. Virgo, Travis J. Feuling, Todd E. Barkalow
-
Publication number: 20120235016Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: ApplicationFiled: May 25, 2012Publication date: September 20, 2012Applicant: Affymetrix, Inc.Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleinik-Ovod
-
Publication number: 20110243411Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: ApplicationFiled: June 9, 2011Publication date: October 6, 2011Applicant: AFFYMETRIX, INC.Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman DeWeerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
-
Patent number: 7983467Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: GrantFiled: February 11, 2010Date of Patent: July 19, 2011Assignee: Affymetrix, Inc.Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
-
Publication number: 20110051623Abstract: An exemplary embodiment of the present invention provides a method of generating a representation of a storage network. The method includes obtaining an request from a client system to view contents of a node in a tree model. The method also includes receiving tree information corresponding to the node and adding the tree information to the tree model.Type: ApplicationFiled: August 27, 2009Publication date: March 3, 2011Inventors: Eric Earl Johnson, Jefferson Nathan Lee, Timothy L. Virgo, Travis J. Feuling, Todd E. Barkalow
-
Patent number: 7871812Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: GrantFiled: October 27, 2004Date of Patent: January 18, 2011Assignee: Affymetrix, Inc.Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel M. Katz, Ksenia Oleink-Ovod
-
Publication number: 20100142850Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: ApplicationFiled: February 11, 2010Publication date: June 10, 2010Applicant: Affymetrix, INC.Inventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
-
Patent number: 7689022Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: GrantFiled: March 14, 2003Date of Patent: March 30, 2010Assignee: Affymetrix, Inc.Inventors: Nathan K. Weiner, Patrick J. Odoy, Erik Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
-
Patent number: 6986553Abstract: A wheel ornamentation assembly is provided for attachment to a wheel secured to a wheel hub with a plurality of lug nuts. The wheel ornamentation assembly includes a wheel ornamentation having an outboard surface and an inboard surface. The wheel ornamentation assembly also includes a plurality of retention legs extending axially from the inboard surface for engaging the lug nuts. The wheel ornamentation also includes a wire retainer cooperating with the retention legs to provide mechanical support to the retention legs and prevent the wheel ornamentation from disengaging the lug nuts.Type: GrantFiled: March 27, 2002Date of Patent: January 17, 2006Assignee: McKechnie Vehicle Components (USA), Inc.Inventors: Eric Earl Jensen, Roger Andrew Renaud, David Browning Ferriss
-
Publication number: 20040012676Abstract: An embodiment of a scanning system is described including optical elements that direct an excitation beam at a probe array, detectors that receive reflected intensity data responsive to the excitation beam, where the reflected intensity data is responsive to a focusing distance between an optical element and the probe array, a transport frame that adjusts the focusing distance in a direction with respect to the probe array, an auto-focuser that determines a best plane of focus based upon characteristics of the reflected intensity data of at least two focusing distances where the detectors further receive pixel intensity values based upon detected emissions from a plurality of probe features disposed on the probe array at the best plane of focus, and an image generator that associates each of the pixel intensity values with at least one image pixel position of a probe array based upon one or more position correction values.Type: ApplicationFiled: March 14, 2003Publication date: January 22, 2004Applicant: Affymetrix, Inc., a Corporation Organized under the Laws of DelawareInventors: Nathan K. Weiner, Patrick J. Odoy, Eric Schultz, Mark Jones, James Overbeck, Herman Deweerd, David A. Stura, Albert Bukys, Tim Woolaver, Thomas P. Regan, David Bradbury, Eric Earl McKenzie, Roger DiPaolo, Christopher Miles, Joel Katz, Ksenia Oleink-Ovod
-
Publication number: 20030184146Abstract: A wheel ornamentation assembly is provided for attachment to a wheel secured to a wheel hub with a plurality of lug nuts. The wheel ornamentation assembly includes a wheel ornamentation having an outboard surface and an inboard surface. The wheel ornamentation assembly also includes a plurality of retention legs extending axially from the inboard surface for engaging the lug nuts. The wheel ornamentation also includes a wire retainer cooperating with the retention legs to provide mechanical support to the retention legs and prevent the wheel ornamentation from disengaging the lug nuts.Type: ApplicationFiled: March 27, 2002Publication date: October 2, 2003Inventors: Eric Earl Jensen, Roger Andrew Renaud, David Browning Ferriss
-
Patent number: 6351807Abstract: A processor (40) in a data processing system simultaneously loads multiple registers (60) with a single value for fast domain switching. A domain switch instruction asserts a register block write signal (112) along with the register write signal (116) when block writing the single value to the set of registers (60). Register address lines (110, 111) are decoded in two sets: a first set of decoded address lines (110) specifying a block of registers; and the second set (111) specifying one register in the block of registers. When the register block write signal (112) is asserted during a register write, the second set of decoded address lines (111) are ignored, and all registers in the block of registers (60) selected by the first set of decoded address lines (110) are simultaneously loaded with a common value. Additional drive requirements are solved either by adding a buffer (226) to each register bit, or by disabling (228) the feedback path (215) in each register bit during block writes.Type: GrantFiled: September 25, 1998Date of Patent: February 26, 2002Assignee: Bull HN Information Systems Inc.Inventors: Ron W. Yoder, Russell W. Guenthner, William A. Shelly, Eric Earl Conway, Boubaker Shaiek, Claude Rabel