Patents by Inventor Eric G. Dow

Eric G. Dow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7585580
    Abstract: A fuel cell and a method for using the fuel cell to make electricity, in which the fuel cell has an anode half-cell having an electrocatalytic anode and a liquid anolyte that is substantially isopropanol dissolved in seawater. The fuel cell has a cathode half-cell having an electrocatalytic cathode and a liquid catholyte that is substantially hydrogen peroxide dissolved in slightly acidic seawater. The half-cells share a common proton exchange membrane. When the anode and cathode are in electrical connection the isopropanol is oxidized to carbon dioxide, which is fugitive, and the hydrogen peroxide is reduced to water. In the method, the anolyte and the catholyte, which are in effect the fuel of the fuel cell, are metered and re-circulated as needed to produce the necessary electrical power. The electrocatalytic electrodes are typically comprised of palladium and iridium alloys.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: September 8, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Maria G. Medeiros, Eric G. Dow, Steven P. Tucker, Russel R. Bessette
  • Patent number: 7521149
    Abstract: A new semi-fuel cell design that incorporates ion exchange membranes to create separate compartments for the anolyte and catholyte to flow through the semi-fuel cell thereby isolating the metal anode of the bipolar electrode from the catholyte while still allowing the necessary ion transfer to affect the necessary electrochemical balance for the reaction to take place in the semi-fuel cell.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 21, 2009
    Inventors: Maria G. Medeiros, Eric G. Dow, Russell R. Bessette, Susan G. Yan, Dwayne W. Dischert
  • Patent number: 7361427
    Abstract: An improved method of fabricating and discharging a pile configured battery which utilizes an electrically conductive flowing aqueous electrolyte. This is accomplished by use of a single piece hydraulic manifold plate which decouples the hydraulic performance parameters of the manifold from the electrical performance parameters. The manifold plate includes a configuration of hydraulic feed channels and distribution headers which separately account for electrical resistive effects and fluid viscous and dynamic pressure effects. Implementation of such manifold plates allow for improved energy conversion efficiency as well as utilization of multiple dissimilar fluids in a single battery cartridge cell discharge at greatly reduced complexity and cost.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: April 22, 2008
    Assignee: The United States of America represented by the Secretary of the Navy
    Inventors: Eric G. Dow, Gary Bolstridge
  • Patent number: 7255960
    Abstract: An electrochemical cell system and methods for controlling the system are provided that are operated to produce an amount of current based upon power draw. The cell utilizes a solution phase catholyte introduced into a cell containing a metallic anode and a catalytic surface. A cathodic species is introduced into the space between the anode and the surface as a liquid along with electrolyte and liquid caustic. The mixture of caustic, electrolyte and liquid catholyte is continuously recirculated through the space, and a portion of the recirculation stream is exhausted in order to control the concentration of reaction products in each cell. Controllable injection mechanisms are used to inject the liquids from storage sources based upon the monitored power draw. The control mechanism independently controls each injection mechanism to inject appropriate amounts of caustic, electrolyte and atholyte to achieve the desired concentrations.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: August 14, 2007
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Eric G. Dow, Steven P. Tucker
  • Patent number: 7250568
    Abstract: An assembly for vehicle deceleration and buoyancy comprises a pair of doors enclosing flotation bags inflatable for buoyant recovery of the torpedo. In operation, the doors are controllably forced open to an initial angle off a longitudinal axis of the assembly to a fully-deployed position by hydrodynamic forces of the movement of the vehicle. From the doors blocking the hydrodynamic forces, the vehicle decelerates. The hydrodynamic braking action of the doors reduces the time required to reach terminal velocity, thus reducing the depth the vehicle sinks and enabling recovery with less gas required for inflation.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: July 31, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eric G. Dow, James D. Hrubes
  • Patent number: 7195841
    Abstract: A system and a method of storage and dissolution of solid catholyte are provided. The system and the method employ a solid medium having a controlled surface from which solid catholyte particles suspended within a matrix of encapsulating species are dissolved and hydrolyzed producing hydrogen peroxide to be used in semi fuel cells of undersea vehicles. Encapsulating species are also dissolved and hydrolyzed rendering products completely usable in the semi fuel cell. Sodium peroxide is preferably used as the solid catholyte and potassium superoxide and/or sodium hydroxide are preferably used as encapsulating species.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: March 27, 2007
    Assignee: The United States of America represented by the Secretary of the Navy
    Inventors: Steven P. Tucker, Maria G. Medeiros, Eric G. Dow
  • Patent number: 7052741
    Abstract: A method is provided for the fabrication of a fibrous structure. Fibers are deposited in a hopper connected to an electrode. A mesh covers the hopper opening and the hopper is inverted and suspended over an adhesive coated substrate. An electric field is generated between the hopper and the substrate while the hopper is simultaneously shaken. As a result, fibers fall through the mesh, aligned along the electric field lines, travel through the electric field, and are coupled on one end thereof to the adhesive.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: May 30, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Maria G. Medeiros, Eric G. Dow, Russell R. Bessette, Craig M. Deschenes, Christopher N. Lafratta, Armand F. Lewis, Yong K. Kim
  • Patent number: 6849356
    Abstract: The present invention relates to an improved semi-fuel cell and an improved cathode used therein. The semi-fuel cell stack comprises a housing, an anode within the housing, a porous cathode within the housing, an aqueous catholyte within the housing, an aqueous anolyte stream flowing in the housing, and a membrane for preventing migration of the catholyte through the porous cathode and into the anolyte stream. In a preferred embodiment of the present invention, the catholyte comprises an aqueous hydrogen peroxide solution, the anolyte comprises a NaOH/seawater solution, and the membrane permits passage of OH? ions while inhibiting the passage of hydrogen peroxide. The membrane is attached to a surface of the cathode or alternatively, impregnated into the cathode.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: February 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Eric G. Dow, Susan G. Yan, Maria G. Medeiros, Russell R. Bessette
  • Patent number: 6740220
    Abstract: The present invention relates to a method of producing an electrocatalytic cathode for use in an electrochemical cell system comprising the steps of providing a carbon substrate and simultaneously depositing palladium and iridium on the carbon substrate by cyclic voltammetry or by controlled potential coulometry. The simultaneous deposition of the palladium and iridium is preferably carried out using a solution containing 1.0 mM palladium chloride, 2.0 mM sodium hexachloroiridate, 0.2M potassium chloride, and 0.1M hydrochloric acid.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: May 25, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Maria G. Medeiros, Eric G. Dow, Russell R. Bessette, James M. Cichon
  • Publication number: 20030124418
    Abstract: The present invention relates to an improved semi-fuel cell and an improved cathode used therein. The semi-fuel cell stack comprises a housing, an anode within the housing, a porous cathode within the housing, an aqueous catholyte within the housing, an aqueous anolyte stream flowing in the housing, and a membrane for preventing migration of the catholyte through the porous cathode and into the anolyte stream. In a preferred embodiment of the present invention, the catholyte comprises an aqueous hydrogen peroxide solution, the anolyte comprises a NaOH/seawater solution, and the membrane permits passage of OH— ions while inhibiting the passage of hydrogen peroxide. The membrane is attached to a surface of the cathode or alternatively, impregnated into the cathode.
    Type: Application
    Filed: January 3, 2002
    Publication date: July 3, 2003
    Inventors: Eric G. Dow, Susan G. Yan, Maria G. Medeiros, Russell R. Bessette
  • Patent number: 6465124
    Abstract: The present invention relates to an improved magnesium semi-fuel cell which has a magnesium anode, a seawater/catholyte electrolyte, preferably containing acid to solubilize solid precipitates, and an electrocatalyst composed of palladium and iridium catalyzed onto carbon paper. The acid added to the electrolyte is preferably selected from the group consisting of sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, and mixtures thereof.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 15, 2002
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Maria G. Medeiros, Eric G. Dow, Russell R. Bessette
  • Patent number: 6013192
    Abstract: The present invention relates to a dry composition of materials to be used n a battery system. The dry composition comprises a mixture consisting of sodium hydroxide and sodium oxide. In a first reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having a 15% by weight concentration of sodium hydroxide. In a second reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having to up to about 75% by weight concentration of sodium hydroxide. The present invention also relates to a battery system and a method for generating electrical power which utilize the aforementioned dry composition of materials.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: January 11, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steven P. Tucker, Raymond W. Roberts, Eric G. Dow, James R. Moden
  • Patent number: 5733679
    Abstract: The present invention relates to a dry composition of materials to be used n a battery system. The dry composition comprises a mixture consisting of sodium hydroxide and sodium oxide. In a first reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having a 15% by weight concentration of sodium hydroxide. In a second reservoir in the battery system, the mixture is present in an amount sufficient to form with water a heated sodium hydroxide electrolyte solution having to up to about 75% by weight concentration of sodium hydroxide. The present invention also relates to a battery system and a method for generating electrical power which utilize the aforementioned dry composition of materials.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: March 31, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Steven P. Tucker, Raymond W. Roberts, Eric G. Dow, James R. Moden