Patents by Inventor Eric G. Ladizinsky

Eric G. Ladizinsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957065
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: April 9, 2024
    Assignee: 1372934 B.C. LTD.
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 11856871
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: December 26, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler
  • Publication number: 20230240154
    Abstract: Methods of forming superconducting integrated circuits are discussed. The method includes depositing a first superconducting metal layer to overlie at least a portion of a substrate, depositing a dielectric layer to cover a first region of the first superconducting metal layer, pattering the dielectric layer to expose at least a portion of the first region of the first superconducting metal layer and form an opening, and depositing a second superconducting metal layer at an ambient temperature that is less than a melting temperature of the second superconducting metal layer such that the second superconducting metal layer fills the opening and conductively contacts the at least a portion of the first region of the first superconducting metal layer.
    Type: Application
    Filed: June 22, 2021
    Publication date: July 27, 2023
    Inventors: Byong Hyop Oh, Eric G. Ladizinsky, J. Jason Yao
  • Publication number: 20220263007
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 18, 2022
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler
  • Publication number: 20210384406
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Application
    Filed: May 17, 2021
    Publication date: December 9, 2021
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 11038095
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: June 15, 2021
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Publication number: 20200152851
    Abstract: Systems and methods for fabricating a superconducting integrated circuit that includes wiring layers comprising low-noise material are described. A superconducting integrated circuit can be implemented in a computing system that includes a quantum processor. Such a superconducting integrated circuit includes a first set of one or more wiring layers that form a noise-susceptible superconducting device that can decrease processor when exposed to noise. The superconducting integrated circuit can further include a second set of one or more wiring layers that form a superconducting device that is less susceptible to noise. Fabricating a superconducting device that contains low-noise material can include depositing and patterning a wiring layer comprising a first material that is superconductive in a respective range of temperatures and depositing and patterning a different wiring layer comprising a second material that is superconductive in a respective range of temperatures.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Inventors: Trevor M. Lanting, Danica W. Marsden, Byong Hyop Oh, Eric G. Ladizinsky, Shuiyuan Huang, J. Jason Yao, Douglas P. Stadtler
  • Publication number: 20200144476
    Abstract: Various techniques and apparatus permit fabrication of superconductive circuits. A superconducting integrated circuit comprising a superconducting stud via, a kinetic inductor, and a capacitor may be formed. Forming a superconducting stud via in a superconducting integrated circuit may include masking with a hard mask and masking with a soft mask. Forming a superconducting stud via in a superconducting integrated circuit may include depositing a dielectric etch stop layer. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by an electrical vernier. Interlayer misalignment in the fabrication of a superconducting integrated circuit may be measured by a chain of electrical verniers and a Wheatstone bridge. A superconducting integrated circuit with three or more metal layers may include an enclosed, matched, on-chip transmission line. A metal wiring layer in a superconducting integrated circuit may be encapsulated.
    Type: Application
    Filed: January 31, 2018
    Publication date: May 7, 2020
    Inventors: Shuiyuan Huang, Byong H. Oh, Douglas P. Stadtler, Edward G. Sterpka, Paul I. Bunyk, Jed D. Whittaker, Fabio Altomare, Richard G. Harris, Colin C. Enderud, Loren J. Swenson, Nicolas C. Ladizinsky, Jason J. Yao, Eric G. Ladizinsky
  • Patent number: 10454015
    Abstract: Fabricating wiring layers above a Josephson junction multi-layer may include removing a part of the multilayer; depositing an insulating layer to overlie a part of the multilayer; and patterning the insulating layer to define a hole in the insulating layer. The method includes depositing a first superconducting wiring layer over a part of the insulating layer and within a portion of the hole. Further, insulating and wiring layers may be deposited and a topmost wiring layer defined. The method includes depositing a passivating layer to overlie the topmost wiring layer. Fabricating a superconducting integrated circuit comprising a hybrid dielectric system may include depositing a high-quality dielectric layer that overlies a superconducting feature. The method includes depositing a second dielectric layer that overlies at least part of the high-quality dielectric layer. The second dielectric layer can comprise a conventional dielectric material.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: October 22, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Trevor Michael Lanting, Eric G. Ladizinsky, J. Jason Yao, Byong Hyop Oh
  • Publication number: 20180219150
    Abstract: Fabricating wiring layers above a Josephson junction multi-layer may include removing a part of the multilayer; depositing an insulating layer to overlie a part of the multilayer; and patterning the insulating layer to define a hole in the insulating layer. The method includes depositing a first superconducting wiring layer over a part of the insulating layer and within a portion of the hole. Further, insulating and wiring layers may be deposited and a topmost wiring layer defined. The method includes depositing a passivating layer to overlie the topmost wiring layer. Fabricating a superconducting integrated circuit comprising a hybrid dielectric system may include depositing a high-quality dielectric layer that overlies a superconducting feature. The method includes depositing a second dielectric layer that overlies at least part of the high-quality dielectric layer. The second dielectric layer can comprise a conventional dielectric material.
    Type: Application
    Filed: August 12, 2015
    Publication date: August 2, 2018
    Inventors: Trevor Michael Lanting, Eric G. Ladizinsky, J. Jason Yao, Byong Hyop Oh
  • Patent number: 6188084
    Abstract: A high-temperature (10 K) superconductive integrated circuit has a ground plane (2), an interlevel dielectric (6), and a low value resistor (18) to provide conductive paths to reduce parasitic circuit inductances, thereby increasing the speed and performance of the integrated circuit. The circuit also includes a high value resistor (20) connected between interconnect wires (34) to produce a desired resistance with a short distance between the interconnect wires (34), thereby significantly reducing the circuit area.
    Type: Grant
    Filed: March 11, 1999
    Date of Patent: February 13, 2001
    Assignee: TRW Inc.
    Inventors: George L. Kerber, Lynn A. Abelson, Raffi N. Elmadjian, Eric G. Ladizinsky
  • Patent number: 5962865
    Abstract: A high-temperature (10 K) superconductive integrated circuit has a ground plane (2), an interlevel dielectric (6), and a low value resistor (18) to provide conductive paths to reduce parasitic circuit inductances, thereby increasing the speed and performance of the integrated circuit. The circuit also includes a high value resistor (20) connected between interconnect wires (34) to produce a desired resistance with a short distance between the interconnect wires (34), thereby significantly reducing the circuit area.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: October 5, 1999
    Assignee: TRW Inc.
    Inventors: George L. Kerber, Lynn A. Abelson, Raffi N. Elmadjian, Eric G. Ladizinsky
  • Patent number: 5897367
    Abstract: A high-temperature (10K) superconductive integrated circuit has a ground plane (2), an interlevel dielectric (6), and a low value resistor (18) to provide conductive paths to reduce parasitic circuit inductances, thereby increasing the speed and performance of the integrated circuit. The circuit also includes a high value resistor (20) connected between interconnect wires (34) to produce a desired resistance with a short distance between the interconnect wires (34), thereby significantly reducing the circuit area.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: April 27, 1999
    Assignee: TRW Inc.
    Inventors: George L. Kerber, Lynn A. Abelson, Raffi N. Elmadjian, Eric G. Ladizinsky