Patents by Inventor Eric H. Bonde

Eric H. Bonde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11013915
    Abstract: Medical leads have one or more openly coiled filars and a distal body coupled to the openly coiled filars. The openly coiled filars provide a lead with compliance and elasticity while the distal body provides the firmness needed for placement and support of the electrodes. The openly coiled filars may transition to a linear distal portion that extends to the distal body, and the distal body may have proximal tines that fold proximally to become adjacent to the linear distal portion of the filars. The openly coiled filars may instead extend to the distal body and the proximal tines may be laterally arced to then fold against the lateral surface of the coiled filars. The tines may fold distally during explantation to allow the distal body to release and exit the body.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 25, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, Phillip C. Falkner, Michael T. Hegland, Brian T. Stolz, Patrick D. Wells
  • Publication number: 20210052295
    Abstract: Assemblies and methods provide for implantation of multiple medical leads to a defined space within the body, such as the epidural space, through a single entry. A catheter having multiple lumens or alternatively a single oblong lumen may be used. A distal end of the catheter enters the defined space through the single entry such that the distal ends of the multiple lumens or the oblong lumen are present in the defined space. Medical leads are introduced through the multiple lumens or the oblong lumen into the defined space. In some cases, the distal end of the catheter may be deflectable to direct the medical leads within the defined space. In other cases, sheaths may be present within each lumen of the catheter where the sheaths may be extended into the defined space and deflect to direct the medical leads that are being passed through a lumen of the sheaths.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 25, 2021
    Inventors: Eric H. Bonde, Phillip C. Falkner, John B. Horrigan, Stuart R. MacDonald, Madeline A. Mannion
  • Patent number: 10881428
    Abstract: A shaped lead introducer being elastically deflectable and having a pre-set shape end portion and forming a pre-set angle for implanting leads into an epidural space of a patient.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 5, 2021
    Assignee: Medtronic, Inc.
    Inventors: Phillip C. Falkner, Eric H. Bonde, John B. Horrigan
  • Publication number: 20200398042
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 24, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20200384261
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384259
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384260
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200376256
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Publication number: 20200376257
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, Eric H. Bonde, Erik R. Scott, Gabriela C. Molnar, Gordon O. Munns, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Thomas P. Miltich, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376259
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376255
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 10792488
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 6, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Brad C. Tischendorf, Eric H. Bonde, Phillip C. Falkner, John E. Kast, Randy S. Roles, Erik R. Scott, Todd V. Smith, Xuan K. Wei, Anthony M. Chasensky, Michael J. Ebert, Shawn C. Kelley, Gabriela C. Molnar, Richard T. Stone
  • Patent number: 10758262
    Abstract: Assemblies and methods provide for implantation of multiple medical leads to a defined space within the body, such as the epidural space, through a single entry. A catheter having multiple lumens or alternatively a single oblong lumen may be used. A distal end of the catheter enters the defined space through the single entry such that the distal ends of the multiple lumens or the oblong lumen are present in the defined space. Medical leads are introduced through the multiple lumens or the oblong lumen into the defined space. In some cases, the distal end of the catheter may be deflectable to direct the medical leads within the defined space. In other cases, sheaths may be present within each lumen of the catheter where the sheaths may be extended into the defined space and deflect to direct the medical leads that are being passed through a lumen of the sheaths.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 1, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, Phillip C. Falkner, John B. Horrigan, Stuart R. MacDonald, Madeline A. Mannion
  • Patent number: 10575935
    Abstract: A urinary tract valve includes an expandable valve element positionable within a bladder of a patient via a urinary tract of the patient in a collapsed configuration. The expandable valve element is configured to transition from the collapsed configuration to an expanded configuration after being positioned within the bladder of the patient. The expandable valve element includes a ferromagnetic element that facilitates selective control of the expandable valve element with a magnetic field between an open position and a closed position when positioned within the bladder of the patient. In the closed position, the expandable valve element is configured to seal an internal urethral opening of the patient. In the open position, the expandable valve element is configured to allow urine to pass from the bladder of the patient, through an internal urethral opening of the patient and into a urethra of the patient.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: March 3, 2020
    Assignee: Medtronic, Inc.
    Inventors: Xuan K. Wei, Eric H. Bonde, Charles Thomas Bombeck
  • Publication number: 20190366105
    Abstract: The disclosure is directed to an implant tool and cannula used to facilitate the implantation of a medical device into a patient. The implant tool includes a housing that is held by a user and a needle attached to the housing. The cannula may be positioned over the needle and delivered to a target tissue within the patient. The cannula includes an electrode at a distal portion to deliver test stimulation to confirm the location of the target site or placement of the implant tool relative to the target site before removing the needle of the implant tool. In this manner, the cannula may be repositioned within the patient until the position of the implant tool and cannula relative to the target site is verified with the test stimulation.
    Type: Application
    Filed: August 19, 2019
    Publication date: December 5, 2019
    Inventors: Eric H. Bonde, Martin T. Gerber
  • Publication number: 20190282818
    Abstract: In some examples, an implantable medical device includes an implantable housing, a neurostimulator within the housing, a plurality of electrodes, an implantable lead coupled to the housing, and an actuator formed with the housing. The implantable lead includes at least one electrode of the plurality of electrodes and one or more conductors coupling the at least one electrode to the neurostimulator. The actuator is configured to cause at least a portion of the implantable lead to deflect.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 19, 2019
    Inventors: Eric H. Bonde, John E. Kast, Erik R. Scott, Xuan K. Wei
  • Patent number: 10413736
    Abstract: The disclosure is directed to an implant tool and cannula used to facilitate the implantation of a medical device into a patient. The implant tool includes a housing that is held by a user and a needle attached to the housing. The cannula may be positioned over the needle and delivered to a target tissue within the patient. The cannula includes an electrode at a distal portion to deliver test stimulation to confirm the location of the target site or placement of the implant tool relative to the target site before removing the needle of the implant tool. In this manner, the cannula may be repositioned within the patient until the position of the implant tool and cannula relative to the target site is verified with the test stimulation.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 17, 2019
    Assignee: Medtronic, Inc.
    Inventors: Eric H. Bonde, Martin T. Gerber
  • Publication number: 20190255326
    Abstract: A system including a stimulation generator configured to delivery external stimulation to control or alleviate urinary or fecal incontinence. The system may also include sense electrodes configured to sense the presence of wetness. The system may provide closed loop therapy based on the presence of wetness.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Xuan K. Wei, Eric H. Bonde, John R. LaLonde, David A. Dinsmoor
  • Patent number: 10327804
    Abstract: An indicator element of a percutaneous needle guide for a medical scanning device includes a pointer for pointing to a percutaneous needle entry site on an epidermis of a body, when the guide is attached to the device and the device is positioned over the epidermis for scanning. A user may orient and insert a needle into the entry site according to the direction of the pointer, by just viewing the pointer, without the needle being constrained by the pointer. The guide may include an adjustment mechanism for moving the indicator element with respect to the device, when the guide is attached to the device; the adjustment mechanism moves the indicator element, without changing an orientation of the pointer, in a direction approximately parallel to a plane that is approximately tangent with an apex of the device transducer surface and approximately perpendicular to a longitudinal axis of the device.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, Kevin M. Cristadoro, Yelena G. Tropsha
  • Patent number: 10328271
    Abstract: In some examples, an implantable medical device includes an implantable housing, a neurostimulator within the housing, a plurality of electrodes, an implantable lead coupled to the housing, and an actuator formed with the housing. The implantable lead includes at least one electrode of the plurality of electrodes and one or more conductors coupling the at least one electrode to the neurostimulator. The actuator is configured to cause at least a portion of the implantable lead to deflect.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, John E. Kast, Erik R. Scott, Xuan K. Wei