Patents by Inventor Eric H. Jordan

Eric H. Jordan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200039888
    Abstract: A multi-layer coating that allows arrest of contaminant infiltration includes at least one layer that is not very reactive to an infiltrating reactive species, and at least one highly reactive ceramic layer (HRC layer) containing materials that react to slow or arrest contaminant infiltration.
    Type: Application
    Filed: September 26, 2019
    Publication date: February 6, 2020
    Applicant: The University of Connecticut
    Inventors: Eric H. Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Patent number: 10472286
    Abstract: Embodiments of a microstructure that allows arrest of contaminant infiltration includes an inter layer and at least one highly reactive ceramic layer. The inter layer is not reactive to an infiltrating reactive species. The HRC layer includes materials that react with a reactive contaminant species to slow or arrest infiltration of such contaminant species.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: November 12, 2019
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Eric H Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Patent number: 9488470
    Abstract: A method for evaluating the condition of a ceramic coating deposited on a substrate comprising illuminating the ceramic coating with light, measuring the intensity of light returned from the ceramic coating as function of depth in the coating and transverse position on the coating, and analyzing the measured light intensities to obtain one or more of intensity of the light returned from the exposed coating surface relative to the intensity of light returned from the coating/substrate interface, intensity of the light returned from the coating/substrate interface relative to the intensity of light returned from the bulk of the ceramic coating, determination of roughness at the exposed surface of the ceramic coating, and determination of roughness of the interface between the ceramic coating and underlying bond coat or substrate.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: November 8, 2016
    Assignees: UNIVERSITY OF CONNETICUT, SOUTHWEST SCIENCES INCORPORATED
    Inventors: Kristen A. Peterson, Elias P. Rosen, Eric H. Jordan, Sina Shahbazmohamadi, Andrei B. Vakhtin
  • Publication number: 20160257618
    Abstract: Embodiments of a microstructure that allows arrest of contaminant infiltration includes an inter layer and at least one highly reactive ceramic layer. The inter layer is not reactive to an infiltrating reactive species. The HRC layer includes materials that react with a reactive contaminant species to slow or arrest infiltration of such contaminant species.
    Type: Application
    Filed: February 10, 2016
    Publication date: September 8, 2016
    Applicant: The University of Connecticut
    Inventors: Eric H. Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Patent number: 9116126
    Abstract: Systems and techniques are disclosed for removing contaminants from a surface of a thermal barrier coating (TBC) and, optionally, estimating the remaining lifetime of the TBC. Laser induced breakdown spectroscopy (LIBS) is one method that may be used to remove contaminants from a surface the TBC prior to performing photo luminescence piezo spectroscopy (PLPS) or another spectroscopic technique on a thermally grown oxide (TGO). LIBS may facilitate monitoring substantially in real-time the chemical composition of the material removed. LIBS may be used to remove substantially only the contaminants with minimal effects on the underlying TBC. One technique for determining when to stop removal of material from the TBC is cross-correlation between a spectrum collected from the ablated material and a reference spectrum collected from a reference substrate. In some embodiments, the same system may be used to perform LIBS to remove impurities and PLPS to measure stress in the TGO.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 25, 2015
    Assignees: Rolls-Royce Corporation, The University of Connecticut
    Inventors: Waled T. Hassan, William J. Brindley, Eric H. Jordan, Michael W. Renfro
  • Patent number: 8877119
    Abstract: Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: November 4, 2014
    Assignee: University of Connecticut Center for Science and Technology and Commercialization
    Inventors: Eric H. Jordan, Steven L. Suib, Aparna Iyer, Jacquelynn Garofano, Chun-Hu Chen
  • Publication number: 20130062323
    Abstract: Systems and techniques are disclosed for removing contaminants from a surface of a thermal barrier coating (TBC) and, optionally, estimating the remaining lifetime of the TBC. Laser induced breakdown spectroscopy (LIBS) is one method that may be used to remove contaminants from a surface the TBC prior to performing photo luminescence piezo spectroscopy (PLPS) or another spectroscopic technique on a thermally grown oxide (TGO). LIBS may facilitate monitoring substantially in real-time the chemical composition of the material removed. LIBS may be used to remove substantially only the contaminants with minimal effects on the underlying TBC. One technique for determining when to stop removal of material from the TBC is cross-correlation between a spectrum collected from the ablated material and a reference spectrum collected from a reference substrate. In some embodiments, the same system may be used to perform LIBS to remove impurities and PLPS to measure stress in the TGO.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 14, 2013
    Applicants: UNIVERSITY OF CONNECTICUT, ROLLS-ROYCE CORPORATION
    Inventors: Waled T. Hassan, William J. Brindley, Eric H. Jordan, Michael W. Renfro
  • Publication number: 20120322645
    Abstract: Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 20, 2012
    Inventors: Eric H. Jordan, Steven L. Suib, Aparna Iyer, Jacquelynn Garofano, Chun-Hu Chen
  • Patent number: 5596620
    Abstract: An apparatus which allows monochromatic radiographs to be produced using conventional "table top" Coolidge tube generated x-rays, comprises of the use of known bent crystal x-ray diffractive optics to produce radiographic images. The apparatus for producing the desirable x-ray radiation in a predetermined maximum intensity includes a crystal of the type mentioned above which focuses the x-rays emitted from the tube, the crystal and tube being mounted on a linear translation table. In addition, a method of mammography and differential angiography employing that device are presented. Resolution of mammographs are improved and the method which uses images obtained with radiation above and below the absorption edge of the dye being used to detect anomalies in a circulatory system allows the use of dramatically reduced dye concentrations.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: January 21, 1997
    Assignee: The University of Connecticut
    Inventors: Howard A. Canistraro, Eric H. Jordan, Douglas M. Pease
  • Patent number: 5398273
    Abstract: A displacement measuring system includes means for focusing x-rays into a narrow, intense beam which can be used to excite targets that fluoresce secondary x-rays. By precisely measuring the focused image position as the focused image is caused to overlap the fluorescing target, relevant changes in target position can be determined. The x-rays are focused using a novel Johansson ground and bent crystal which, along with the x-ray tube, is mounted on a common base for lineal scanning. This common base preferably comprises a linear translation table. By scanning the beam onto fluorescing targets, edge detection can be accomplished by monitoring subsequent x-ray fluorescing using an appropriate detector whose output is measured and recorded. In a preferred embodiment, the detector is formed integral with an enclosure for enclosing the x-ray tube and bent crystal on the linear translation table.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: March 14, 1995
    Assignee: The University of Connecticut
    Inventors: Eric H. Jordan, Howard A. Canistraro, Douglas M. Pease