Patents by Inventor Eric Hartman

Eric Hartman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030101161
    Abstract: A system and method for historical database training of a support vector machine (SVM). The SVM is trained with training sets from a stream of process data. The system detects availability of new training data, and constructs a training set from the corresponding input data. Over time, many training sets are presented to the SVM. When multiple presentations are needed to effectively train the SVM, a buffer of training sets is filled and updated as new training data becomes available. Once the buffer is full, a new training set bumps the oldest training set from the buffer. The training sets are presented one or more times each time a new training set is constructed. A historical database of time-stamped data may be used to construct training sets for the SVM. The SVM may be trained retrospectively by searching the historical database and constructing training sets based on the time-stamped data.
    Type: Application
    Filed: November 28, 2001
    Publication date: May 29, 2003
    Inventors: Bruce Ferguson, Eric Hartman, Doug Johnson, Eric Hurley
  • Publication number: 20030078850
    Abstract: A system and method for optimizing transactions in an e-marketplace. An e-marketplace optimization server couples to a plurality of participant computers through a network. The server hosts a site which provides the e-marketplace where goods and/or services are bought and sold among participants. The server also includes a transaction optimization program which mediates a transaction among the participants which best serves the needs of the participants. Each of the participant computers provides transaction information to the server, including constraints and/or objectives related to the transaction. The transaction optimization program uses the transaction information to produce transaction results for the participants, including an optimized transaction specifying which of the participants are included in the transaction, and the terms of the transaction, which optimizes any objectives of the included participants subject to any constraints of the included participants.
    Type: Application
    Filed: September 5, 2001
    Publication date: April 24, 2003
    Inventors: Eric Hartman, Bruce Ferguson, Doug Johnson, Eric Hurley, Lori Petrone
  • Publication number: 20030078683
    Abstract: A system and method for on-line training of a support vector machine (SVM). The SVM is trained with training sets from a stream of process data. The system detects availability of new training data, and constructs a training set from the corresponding input data. Over time, many training sets are presented to the SVM. When multiple presentations are needed to effectively train the SVM, a buffer of training sets is filled and updated as new training data becomes available. Once the buffer is full, a new training set bumps the oldest training set from the buffer. The training sets are presented one or more times each time a new training set is constructed. An historical database of time-stamped data may be used to construct training sets for the SVM. The SVM may be trained retrospectively by searching the historical database and constructing training sets based on the time-stamped data.
    Type: Application
    Filed: September 5, 2001
    Publication date: April 24, 2003
    Inventors: Eric Hartman, Bruce Ferguson, Doug Johnson, Eric Hurley
  • Publication number: 20030033587
    Abstract: A system and method for on-line training of a non-linear model for use in electronic commerce. The non-linear model is trained with training sets from a stream of process data. The system detects availability of new training data, and constructs a training set from the corresponding input data. Over time, many training sets are presented to the non-linear model. When multiple presentations are needed to effectively train the non-linear model, a buffer of training sets is filled and updated as new training data become available. Once the buffer is full, a new training set bumps the oldest training set from the buffer. The training sets are presented one or more times each time a new training set is constructed. An historical database may be used to construct training sets for the non-linear model. The non-linear model may be trained retrospectively by searching the historical database and constructing training sets.
    Type: Application
    Filed: March 18, 2002
    Publication date: February 13, 2003
    Inventors: Bruce Ferguson, Eric Hartman
  • Patent number: 6047221
    Abstract: A method for modeling a steady-state network in the absence of steady-state historical data. A steady-state neural network can be tied by impressing the dynamics of the system onto the input data during the training operation by first determining the dynamics in a local region of the input space, this providing a set of dynamic training data. This dynamic training data is then utilized to train a dynamic model, gain thereof then set equal to unity such that the dynamic model is now valid over the entire input space. This is a linear model, and the historical data over the entire input space is then processed through this model prior to input to the neural network during training thereof to remove the dynamic component from the data, leaving the steady-state component for the purpose of training. This provides a valid model in the presence of historical data that has a large content of dynamic behavior.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: April 4, 2000
    Assignee: Pavilion Technologies, Inc.
    Inventors: Stephen Piche, James David Keeler, Eric Hartman, William D. Johnson, Mark Gerules, Kadir Liano