Patents by Inventor Eric J. Iverson

Eric J. Iverson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10446868
    Abstract: An automated roll to roll method of making a fuel cell roll good subassembly is described wherein an elongated first subgasket web having a plurality of apertures is moved relative to a plurality of individual electrolyte membranes, each individual electrolyte membrane having a center region. The individual electrolyte membranes are aligned with the first subgasket web so that a center region of each electrolyte membrane is aligned with an aperture of the first subgasket web and the individual electrolyte membranes are attached to the first subgasket web.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: October 15, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Publication number: 20190181461
    Abstract: The present disclosure relates membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The membrane-electrode assemblies include a first porous electrode; an ion permeable membrane, having a first major surface and an opposed second major surface; a first discontinuous transport protection layer disposed between the first porous electrode and the first major surface of the ion permeable membrane; and a first adhesive layer in contact with the first porous electrode and at least one of the first discontinuous transport protection layer and the ion permeable membrane. The first adhesive layer is disposed along the perimeter of the membrane-electrode assembly.
    Type: Application
    Filed: August 9, 2017
    Publication date: June 13, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur Sinan Yordem, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Bharat R. Acharya, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20190097241
    Abstract: The present disclosure relates to electrode assemblies, membrane-electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The electrode and membrane-electrode assemblies include (i) a porous electrode having a first major surface with a first surface area, Ae, an opposed second major surface and a plurality of voids; (ii) a discontinuous transport protection layer, comprising polymer, disposed on the first major surface and having a cross-sectional area, Ap, substantially parallel to the first major surface; and (iii) an interfacial region wherein the interfacial region includes a portion of the polymer embedded in at least a portion of the plurality of voids, a portion of the porous electrode embedded in a portion of the polymer or a combination thereof; and wherein 0.02Ae?Ap?0.85Ae and the porous electrode and discontinuous transport protection layer form an integral structure.
    Type: Application
    Filed: March 15, 2017
    Publication date: March 28, 2019
    Inventors: Brian T. Weber, Brandon A. Bartling, Onur S. Yordem, Raymond P. Johnston, Andrew T. Haug, John E. Abulu, Gregory M. Haugen, Kazuki Noda, Shunsuke Suzuki, Jimmy M. Le, Blake R. Griffith, Daniel E. Johnson, Bharat R. Acharya, Bradley W. Eaton, Michael D. Romano, Daniel M. Pierpont, David J. Miller, Eric J. Iverson
  • Publication number: 20160141642
    Abstract: An automated roll to roll method of making a fuel cell roll good subassembly is described wherein an elongated first subgasket web having a plurality of apertures is moved relative to a plurality of individual electrolyte membranes, each individual electrolyte membrane having a center region. The individual electrolyte membranes are aligned with the first subgasket web so that a center region of each electrolyte membrane is aligned with an aperture of the first subgasket web and the individual electrolyte membranes are attached to the first subgasket web.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Patent number: 9276284
    Abstract: A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: March 1, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Publication number: 20140093807
    Abstract: A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 3, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Patent number: 8637205
    Abstract: A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 28, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Patent number: 8609296
    Abstract: A method and apparatus for making fuel cell components via a roll to roll process are described. Spaced apart apertures are cut in first and second gasket webs that each include adhesives. The first and second gasket webs are transported to a bonding station on conveyers. A membrane web that includes at least an electrolyte membrane is also transported to the bonding station. At the bonding station, a gasketed membrane web is formed by attaching the first and second gasket webs to the membrane web. The first gasket web is attached to a first surface of the membrane web via the adhesive layer of the first gasket web. The second gasket web is attached to a second surface of the membrane web via the adhesive layer of the second gasket web.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 17, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel M. Pierpont, Eric J. Hanson, Michael T. Hicks, Eric J. Iverson, David J. Miller, Scott A. Ripley
  • Publication number: 20130004882
    Abstract: A method and apparatus for making fuel cell components via a roll to roll process are described. Spaced apart apertures are cut in first and second gasket webs that each include adhesives. The first and second gasket webs are transported to a bonding station on conveyers. A membrane web that includes at least an electrolyte membrane is also transported to the bonding station. At the bonding station, a gasketed membrane web is formed by attaching the first and second gasket webs to the membrane web. The first gasket web is attached to a first surface of the membrane web via the adhesive layer of the first gasket web. The second gasket web is attached to a second surface of the membrane web via the adhesive layer of the second gasket web.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Inventors: Daniel M. Pierpont, Eric J. Hanson, Michael T. Hicks, Eric J. Iverson, David J. Miller, Scott A. Ripley
  • Patent number: 8288059
    Abstract: A method and apparatus for making fuel cell components via a roll to roll process are described. Spaced apart apertures are cut in first and second gasket webs that each include adhesives. The first and second gasket webs are transported to a bonding station on conveyers. A membrane web that includes at least an electrolyte membrane is also transported to the bonding station. At the bonding station, a gasketed membrane web is formed by attaching the first and second gasket webs to the membrane web. The first gasket web is attached to a first surface of the membrane web via the adhesive layer of the first gasket web. The second gasket web is attached to a second surface of the membrane web via the adhesive layer of the second gasket web.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 16, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel M. Pierpont, Eric J. Hanson, Michael T. Hicks, Eric J. Iverson, David J. Miller, Scott A. Ripley
  • Patent number: 8012284
    Abstract: Fabrication methods for making a gas diffusion layer incorporating a gasket (GIG) fuel cell subassemblies via roll-to-roll processes are described. A material processable by one or both of heat and pressure having spaced apart apertures is transported to a bonding station. A first gasket layer having gas diffusion layers arranged in relation to spaced apart apertures of a first gasket layer is transported to the bonding station. The heat/pressure processable material is aligned with the first gasket layer and the gas diffusion layers. At the bonding station, the heat/pressure processable material is bonded to the first gasket layer and the gas diffusion layers. After bonding, the heat/pressure processable material forms a second gasket layer that attaches the gas diffusion layers to the first gasket layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 6, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Andrew J. L. Steinbach, Jimmy M. Le, Stephan J. Obradovich, Eric J. Iverson
  • Publication number: 20110151350
    Abstract: A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 23, 2011
    Inventors: Eric J. Iverson, Daniel M. Pierpont, Michael A. Yandrasits, Steven J. Hamrock, Stephan J. Obradovich, Donald G. Peterson
  • Patent number: 7732083
    Abstract: A gas diffusion layer incorporating a gasket (GIG) is described along with assemblies incorporating the GIG subassembly. Processes for making the GIG and membrane electrode assemblies (MEAs) incorporating the GIG are also described. A GIG subassembly includes a gas diffusion layer (GDL) and a gasket bonded to the GDL. The gasket includes a first gasket layer and a second gasket layer. The second gasket layer is formed of a gasket material in contact with the first gasket layer and the GDL. The gasket material of the second gasket layer bonds the GDL to the first gasket layer. An adhesive layer, and optionally a removable adhesive liner, is disposed on a surface of the first gasket layer opposite the second gasket layer. In some MEA configurations, the GDL is disposed within an aperture in the first gasket layer.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 8, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. L. Steinbach, Mark K. Debe, Jimmy M. Le, Stephan J. Obradovich, Eric J. Iverson
  • Publication number: 20090162733
    Abstract: A flow field plate for a fuel cell includes features in the gas input area that enhance gas distribution to the flow field channels. The input area of the flow field plate directs gases from an input manifold to the flow field channels. The input area includes one or more input channels which are defined by input channel walls. One or more features are included within the input area to enhance the distribution of the gas to the flow field channels. The gas distribution enhancement features may provide support for a sealing element to reduce blockage of the channels and/or may provide a path for fluid communication between adjacent input channels.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 25, 2009
    Inventors: Eric J. Iverson, Thomas Herdtle, Michael A. Yandrasits, Larry A. Schleif
  • Publication number: 20080142152
    Abstract: Fabrication methods for making a gas diffusion layer incorporating a gasket (GIG) fuel cell subassemblies via roll-to-roll processes are described. A material processable by one or both of heat and pressure having spaced apart apertures is transported to a bonding station. A first gasket layer having gas diffusion layers arranged in relation to spaced apart apertures of a first gasket layer is transported to the bonding station. The heat/pressure processable material is aligned with the first gasket layer and the gas diffusion layers. At the bonding station, the heat/pressure processable material is bonded to the first gasket layer and the gas diffusion layers. After bonding, the heat/pressure processable material forms a second gasket layer that attaches the gas diffusion layers to the first gasket layer.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Mark K. Debe, Andrew J. L. Steinbach, Jimmy M. Le, Stephan J. Obradovich, Eric J. Iverson
  • Publication number: 20080143061
    Abstract: A gas diffusion layer incorporating a gasket (GIG) is described along with assemblies incorporating the GIG subassembly. Processes for making the GIG and membrane electrode assemblies (MEAs) incorporating the GIG are also described. A GIG subassembly includes a gas diffusion layer (GDL) and a gasket bonded to the GDL. The gasket includes a first gasket layer and a second gasket layer. The second gasket layer is formed of a gasket material in contact with the first gasket layer and the GDL. The gasket material of the second gasket layer bonds the GDL to the first gasket layer. An adhesive layer, and optionally a removable adhesive liner, is disposed on a surface of the first gasket layer opposite the second gasket layer. In some MEA configurations, the GDL is disposed within an aperture in the first gasket layer.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Andrew J. L. Steinbach, Mark K. Debe, Jimmy M. Le, Stephan J. Obradovich, Eric J. Iverson
  • Publication number: 20080145712
    Abstract: A method and apparatus for making fuel cell components via a roll to roll process are described. Spaced apart apertures are cut in first and second gasket webs that each include adhesives. The first and second gasket webs are transported to a bonding station on conveyers. A membrane web that includes at least an electrolyte membrane is also transported to the bonding station. At the bonding station, a gasketed membrane web is formed by attaching the first and second gasket webs to the membrane web. The first gasket web is attached to a first surface of the membrane web via the adhesive layer of the first gasket web. The second gasket web is attached to a second surface of the membrane web via the adhesive layer of the second gasket web.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Inventors: Daniel M. Pierpont, Eric J. Hanson, Michael T. Hicks, Eric J. Iverson, David J. Miller, Scott A. Ripley