Patents by Inventor Eric J. Lundberg

Eric J. Lundberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6662103
    Abstract: A method and system allows conversion of three-dimensional data from a default coordinate frame to an arbitrary user-selected coordinate frame. The method includes obtaining position data in a default coordinate frame and transforming the data into an alternate coordinate frame defined by the user. The alternate coordinate frame can be defined by allowing the user to select a plane, an origin, and an axis, using any desired coordinate system and in any desired orientation. The transformed data allows presentation of position measurements in a form that is relevant to the user's specific application.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: December 9, 2003
    Assignee: ARC Second Inc.
    Inventors: Jeffrey F. Skolnick, Edward R. Barrientos, Sean M. Beliveau, Thomas M. Hedges, Eric J. Lundberg, Edmund S. Pendleton, Roger Wells
  • Patent number: 6545751
    Abstract: An improved low cost theodolite position measurement system and process which is particularly useful in enabling a single operator to conveniently set up the system and calculate elevation (el) and azimuth (az) angle data. Only a single optical transmitter is positioned within a predetermined workspace thus significantly decreasing equipment costs and setup time. The single transmitter is positioned and leveled at a predetermined point in the workspace. In operation the single rotatably mounted transmitter head illuminates the workspace volume with a pair of spaced apart precalibrated fan beams which sweep the space and a periodically emitted reference strobe pulse. At least one optical receiver is selectively positionable within said workspace so that during each revolution of said single transmitter head said receiver receives a first position strike and a second position strike of said fan beams.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: April 8, 2003
    Assignee: Arc Second, Inc.
    Inventors: Sean Beliveau, Edward R. Barrientos, Yvan Beliveau, Thomas M. Hedges, Eric J. Lundberg, Edmund S. Pendleton, Timothy Pratt, Rick Slater, Michael J. Sobel
  • Publication number: 20020008870
    Abstract: An improved low cost theodolite position measurement system and process which is particularly useful in enabling a single operator to conveniently set up the system and calculate elevation (el) and azimuth (az) angle data. Only a single optical transmitter is positioned within a predetermined workspace thus significantly decreasing equipment costs and setup time. The single transmitter is positioned and leveled at a predetermined point in the workspace. In operation the single rotatably mounted transmitter head illuminates the workspace volume with a pair of spaced apart precalibrated fan beams which sweep the space and a periodically emitted reference strobe pulse. At least one optical receiver is selectively positionable within said workspace so that during each revolution of said single transmitter head said receiver receives a first position strike and a second position strike of said fan beams.
    Type: Application
    Filed: February 26, 2001
    Publication date: January 24, 2002
    Inventors: Sean Beliveau, Edward R. Barrientos, Yvan Beliveau, Thomas M. Hedges, Eric J. Lundberg, Edmund S. Pendleton, Timothy Pratt, Rick Slater, Michael J. Sobel
  • Patent number: 5579102
    Abstract: Improved transmitter and receiver units for use in spatial measurement system that are easy and inexpensive to manufacture while providing a high degree of reliability are disclosed. Specifically, the laser transmitter includes a laser emitter, a bearing/motor assembly coupled to the laser emitter, the bearing/motor assembly including a rotatable hollow spindle shaft through which a laser beam generated by the laser emitter passes and a motor for driving the spindle shaft, a prism assembly coupled to the spindle shaft, wherein the prism assembly divides the laser beam generated by the laser emitter into a pair of fanned laser beams, and reflecting means for reflecting the fanned laser beams generated by the prism assembly as counter-rotating fanned laser beams. The receiver unit preferably includes at least one optical receiver coupled to an extension member, a processing unit coupled to the optical receiver, and a receiver interface coupled to the processing unit.
    Type: Grant
    Filed: October 5, 1995
    Date of Patent: November 26, 1996
    Assignee: Spatial Positioning Systems, Inc.
    Inventors: Timothy Pratt, Andrew W. Dornbusch, Yvan J. Beliveau, Eric J. Lundberg, Michael H. Sweeney
  • Patent number: 5461473
    Abstract: Improved transmitter and receiver units for use in spatial measurement system that are easy and inexpensive to manufacture while providing a high degree of reliability are disclosed. Specifically, the laser transmitter includes a laser emitter, a bearing/motor assembly coupled to the laser emitter, the bearing/motor assembly including a rotatable hollow spindle shaft through which a laser beam generated by the laser emitter passes and a motor for driving the spindle shaft, a prism assembly coupled to the spindle shaft, wherein the prism assembly divides the laser beam generated by the laser emitter into a pair of fanned laser beams, and reflecting means for reflecting the fanned laser beams generated by the prism assembly as counter-rotating fanned laser beams. The receiver unit preferably includes at least one optical receiver coupled to an extension member, a processing unit coupled to the optical receiver, and a receiver interface coupled to the processing unit.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: October 24, 1995
    Assignee: Spatial Positioning Systems, Inc.
    Inventors: Timothy Pratt, Andrew W. Dornbusch, Yvan J. Beliveau, Eric J. Lundberg, Michael H. Sweeney
  • Patent number: 5294970
    Abstract: A spatial positioning system includes fixed referent stations which emit rotating, divergent laser beams and a portable reflector. Each fixed station also includes a detector and a processor. The portable reflector may include retroreflectors or transponders. When the rotation of the laser beam is such that it is in line with a portable reflector, the transmitted laser beam is reflected off the portable reflector and received at the fixed receiver. For any point which is crossed by the fanned laser beams of a fixed station, a horizontal angle can be determined. Once these horizontal angles are known for three fixed stations, the point of intersection of three planes, and thus the three-dimensional position of the point, is determined.
    Type: Grant
    Filed: September 6, 1991
    Date of Patent: March 15, 1994
    Assignee: Spatial Positioning Systems, Inc.
    Inventors: Andrew W. Dornbusch, Eric J. Lundberg, Yvan J. Beliveau, Timothy Pratt
  • Patent number: 5247487
    Abstract: A spatial measurement recovery system and method which determining the position, orientation, shape and/or operational characteristics of an environment. The system includes a data gathering apparatus and a model building apparatus. The data gathered may then be transformed into a CADD model of an as-built or as-is environment, or to otherwise map the environment in three dimensions.
    Type: Grant
    Filed: June 17, 1991
    Date of Patent: September 21, 1993
    Assignee: Spatial Positioning Systems, Inc.
    Inventors: Yvan J. Beliveau, Eric J. Lundberg, Andrew Dornbusch, Timothy Pratt
  • Patent number: 5110202
    Abstract: A spatial positioning and measurement system provides three-dimensional position and/or measurement information of an object using one or more fixed referent station systems, and one or more portable position sensor systems. Each fixed station produces at least one primary laser beam which is rotated at a constant angular velocity about a vertical axis. The primary laser beam has a predetermined angle of divergence or angle of spread which is inclined at a predetermined angle from the vertical axis. Each fixed station also preferably includes at least one reflective surface for generating a secondary laser beam.The portable position sensor includes a light sensitive detector, computer, and a display. The light sensitive detector can be formed of at least one "axicon" which directs incoming light to a photosensitive detector. The photosensitive detector generates an electrical pulse when struck by crossing laser beam and sends this pulse to the computer.
    Type: Grant
    Filed: December 31, 1990
    Date of Patent: May 5, 1992
    Assignee: Spatial Positioning Systems, Inc.
    Inventors: Andrew W. Dornbusch, Yvan J. Beliveau, Eric J. Lundberg, Timothy Pratt