Patents by Inventor Eric J. Markvicka

Eric J. Markvicka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11729904
    Abstract: An efficient fabrication technique, including an optional design step, is used to create highly customizable wearable electronics. The method of fabrication utilizes rapid laser machining and adhesion-controlled soft materials. The method produces well-aligned, multi-layered materials created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. The design step can be used to create a 3D device that conforms to different-shaped body parts. These techniques are applied using commercially available materials. These methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: August 15, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Eric J. Markvicka, Michael D. Bartlett, Carmel Majidi, Lining Yao, Guanyun Wang, Yi-Chin Lee, Gierad Laput
  • Patent number: 11682276
    Abstract: Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. A robotic material that mimics soft tissues found in biological systems may be used to identify, compute, and respond to damage. This material includes liquid metal droplets dispersed in soft elastomers that rupture when damaged to create electrically conductive pathways that are identified with a soft active-matrix grid. These technologies may be used to autonomously identify damage, calculate severity, and respond to prevent failure within robotic systems.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: June 20, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D Bartlett, Eric J Markvicka
  • Patent number: 11523514
    Abstract: A fabrication process for soft-matter printed circuit boards is disclosed in which traces of liquid-phase Ga—In eutectic (eGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically-aligned columns of eGaIn-coated ferromagnetic microspheres that are embedded within an interfacial elastomer layer.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: December 6, 2022
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Tong Lu, Eric J. Markvicka
  • Publication number: 20210209906
    Abstract: Soft-matter technologies are essential for emerging applications in wearable computing, human-machine interaction, and soft robotics. However, as these technologies gain adoption in society and interact with unstructured environments, material and structure damage becomes inevitable. A robotic material that mimics soft tissues found in biological systems may be used to identify, compute, and respond to damage. This material includes liquid metal droplets dispersed in soft elastomers that rupture when damaged to create electrically conductive pathways that are identified with a soft active-matrix grid. These technologies may be used to autonomously identify damage, calculate severity, and respond to prevent failure within robotic systems.
    Type: Application
    Filed: November 11, 2020
    Publication date: July 8, 2021
    Applicant: Carnegie Mellon University
    Inventors: Carmel Majidi, Michael D. Bartlett, Eric J Markvicka
  • Publication number: 20200413533
    Abstract: An efficient fabrication technique, including an optional design step, used to create highly customizable wearable electronics through rapid laser machining and adhesion-controlled soft materials assembly is disclosed herein. Well-aligned, multi-layered materials can be created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. The design step can be used to create a 3D device that conforms to different-shaped body parts. These techniques are applied using commercially available materials. These materials and methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Application
    Filed: May 4, 2020
    Publication date: December 31, 2020
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka
  • Publication number: 20200315019
    Abstract: A fabrication process for soft-matter printed circuit boards is disclosed in which traces of liquid-phase Ga—In eutectic (eGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically-aligned columns of eGaIn-coated ferromagnetic microspheres that are embedded within an interfacial elastomer layer.
    Type: Application
    Filed: June 8, 2020
    Publication date: October 1, 2020
    Inventors: Carmel Majidi, Tong Lu, Eric J. Markvicka
  • Patent number: 10757815
    Abstract: A fabrication process for soft-matter printed circuit boards is disclosed in which traces of liquid-phase Ga—In eutectic (eGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically-aligned columns of eGaIn-coated ferromagnetic microspheres that are embedded within an interfacial elastomer layer.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: August 25, 2020
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Tong Lu, Eric J. Markvicka
  • Patent number: 10645803
    Abstract: Disclosed herein is an efficient fabrication approach to create highly customizable wearable electronics through rapid laser machining and adhesion-controlled soft materials assembly. Well-aligned, multi-layered materials can be created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. These techniques are applied using commercially available materials. These materials and methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: May 5, 2020
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka
  • Publication number: 20190215965
    Abstract: A fabrication process for soft-matter printed circuit boards is disclosed in which traces of liquid-phase Ga—In eutectic (eGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically-aligned columns of eGaIn-coated ferromagnetic microspheres that are embedded within an interfacial elastomer layer.
    Type: Application
    Filed: January 9, 2019
    Publication date: July 11, 2019
    Inventors: Carmel Majidi, Tong Lu, Eric J. Markvicka
  • Publication number: 20190082532
    Abstract: Disclosed herein is an efficient fabrication approach to create highly customizable wearable electronics through rapid laser machining and adhesion-controlled soft materials assembly. Well-aligned, multi-layered materials can be created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. These techniques are applied using commercially available materials. These materials and methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Application
    Filed: September 12, 2018
    Publication date: March 14, 2019
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Carmel Majidi, Michael D. Bartlett, Eric J. Markvicka