Patents by Inventor Eric J. Seibel

Eric J. Seibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11907418
    Abstract: Techniques for tracking eye movement in an augmented reality system identify a plurality of base images of an object or a portion thereof. A search image may be generated based at least in part upon at least some of the plurality of base images. A deep learning result may be generated at least by performing a deep learning process on a base image using a neural network in a deep learning mode. A captured image may be localized at least by performing an image registration process on the captured image and the search image using a Kalman filter model and the deep learning result.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: February 20, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Eric J. Seibel, Steven L. Brunton, Chen Gong, Brian T. Schowengerdt
  • Patent number: 11883132
    Abstract: A system for the optical measurement of pH includes a light emitter to emit an excitation light, and a detector coupled to receive florescence light produced by a compound in a mouth of a patient in response to the excitation light. A controller is coupled to the detector, and the controller includes logic that when executed by the controller, causes the system to perform operations. The operations may include emitting the excitation light from the light emitter; measuring an intensity of the florescence light emitted from a surface of individual teeth in a plurality of teeth in the mouth; and determining, based on the intensity of the florescence light, one or more locations on the individual teeth likely to develop demineralization.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: January 30, 2024
    Assignee: University of Washington
    Inventors: Eric J. Seibel, Yuanzheng Gong, Zheng Xu, Jeffrey S. McLean, Yaxuan Zhou
  • Patent number: 11878499
    Abstract: In some embodiments, an apparatus, system, and method for activating a low-adhesion state of a thermal-sensitive tape is described. An example apparatus embodiment includes a light source and a temperature sensor. The light source is configured to illuminate a target area of the thermal-sensitive tape with a first spectrum of electromagnetic radiation to provide heating of the target area. The first spectrum including a first wavelength outside of a visible spectrum. The temperature sensor is configured to detect a second spectrum of electromagnetic radiation to approximate a temperature of the target area. The second spectrum includes a second wavelength different than the first wavelength.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 23, 2024
    Assignee: University of Washington
    Inventors: Mark E. Fauver, Eric J. Seibel
  • Publication number: 20230404551
    Abstract: The present disclosure provides a device including a cylindrical member having a distal end and a proximal end. The cylindrical member includes a plurality of longitudinal slits positioned between the distal end and the proximal end to thereby create a plurality of strips positioned between the plurality of longitudinal slits. The device also includes an elongated hollow tube having a distal end and a proximal end. The elongated hollow tube is coupled to the proximal end of the cylindrical member. The device also includes a rod having a distal end and a proximal end.
    Type: Application
    Filed: November 18, 2021
    Publication date: December 21, 2023
    Inventors: Matthew Carson, Malay Patel, Eric J. Seibel, Lucas Meza
  • Publication number: 20230357610
    Abstract: Temperature-responsive pressure sensitive adhesives and articles of manufacture, such as bandages and medical tape, incorporating the adhesives are described. Methods for selection of a class of pressure sensitive adhesives for embedding a temperature sensitive polymer into the adhesive formulations are also provided.
    Type: Application
    Filed: September 9, 2021
    Publication date: November 9, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Eric J. Seibel, Leonard Y. Nelson, Christopher R. Fellin, Shawn Swanson, Alshakim Nelson, John Devin MacKenzie
  • Publication number: 20230277346
    Abstract: Stent assemblies and related methods for creating an anastomosis employ a bioresorbable stent. A stent assembly includes a bioresorbable stent and one or more bioresorbable retention devices. The stent is configured for retaining a first section of a tubular organ in contact with a second section of the tubular organ to accommodate wound healing for connecting of the first and second sections of the tubular organ. A first end portion of the stent is configured to accommodate insertion into the first section of the tubular organ and inhibit removal from the first section of the tubular organ. A second end portion of the stent is configured to accommodate insertion into the second section of the tubular organ and inhibit removal from the second section of the tubular organ. The one or more retention devices are configurable to secure the first and second sections of the tubular organ to the stent.
    Type: Application
    Filed: March 1, 2023
    Publication date: September 7, 2023
    Inventors: James O. PARK, Eric J. SEIBEL, Abdulmalek ALOTHMAN, Clara BLACK, Brandon LOU, Gillian PEREIRA, Evan ROSS, Ziming YE
  • Patent number: 11541386
    Abstract: An example fluidic device includes an elastic tube, a first actuator coupled to an outer surface of the elastic tube between a first end and a second end of the elastic tube, and a second actuator coupled to the outer surface of the elastic tube between the first actuator and the second end of the elastic tube. The first actuator and the second actuator are configured to move apart from one another to transition a portion of the elastic tube positioned between the first actuator and the second actuator from a first condition to a second condition. A diameter of the elastic tube is greater in the first condition than in the second condition. The fluidic device also includes one or more rotatable components coupled to the first actuator and the second actuator which are configured to rotate the portion of the elastic tube positioned between the first actuator and the second actuator.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Mark E. Fauver, Eric J. Seibel
  • Publication number: 20220395263
    Abstract: The present disclosure provides a fluidic device including a first inlet, an outlet, and a channel positioned between the first inlet and the outlet. The channel is in fluid communication with the first inlet and the outlet. The fluidic device further includes a second inlet positioned between the first inlet and the outlet. The second inlet is in fluid communication with the channel. The fluidic device further includes a pump in fluid communication with the second inlet. The pump is configured to provide a first volume of pulsatile flow to the channel The first volume of pulsatile flow is greater than about 50 ?L per pulse.
    Type: Application
    Filed: November 23, 2020
    Publication date: December 15, 2022
    Inventors: Mark E. Fauver, Eric J. Seibel
  • Patent number: 11478567
    Abstract: A photosensitive medical tape includes a backing layer that is at least partially transparent to a first spectrum of electromagnetic radiation. The photosensitive medical tape also includes a coupling layer disposed on a first side of the backing layer to provide adhesion of the photosensitive medical tape to the human skin. The photosensitive medical tape is disposed to absorb a second spectrum of electromagnetic radiation to decrease a strength of the adhesion provided by the coupling layer. The photosensitive medical tape is also flexible.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 25, 2022
    Assignee: University of Washington
    Inventors: Eric J. Seibel, Leonard Nelson
  • Publication number: 20220322920
    Abstract: The present disclosure provides an introducer device including an outer tube defining a first lumen, and an inner tube defining a second lumen, and a sheath coupled thereto. The first end of the inner tube is positioned in the first lumen of the outer tube, and the inner tube is configured to translate within the first lumen in a direction towards the first end of the outer tube from a first position to a second position. The first end of the sheath is coupled to the first end of the outer tube, and the second end of the sheath is coupled to the first end of the inner tube. The introducer device further includes an inlet port in fluid communication with the inner surface of the outer tube, and one or more steering wires coupled to the sheath that are configured to bias a direction of a leading edge of the sheath as the sheath everts from a retracted position to an extended position.
    Type: Application
    Filed: June 1, 2020
    Publication date: October 13, 2022
    Inventors: Andrew Lewis, Blake Hannaford, Eric J. Seibel
  • Publication number: 20220250374
    Abstract: In some embodiments, an apparatus, system, and method for activating a low-adhesion state of a thermal-sensitive tape is described. An example apparatus embodiment includes a light source and a temperature sensor. The light source is configured to illuminate a target area of the thermal-sensitive tape with a first spectrum of electromagnetic radiation to provide heating of the target area. The first spectrum including a first wavelength outside of a visible spectrum. The temperature sensor is configured to detect a second spectrum of electromagnetic radiation to approximate a temperature of the target area. The second spectrum includes a second wavelength different than the first wavelength.
    Type: Application
    Filed: June 26, 2020
    Publication date: August 11, 2022
    Applicant: University of Washington
    Inventors: Mark E. Fauver, Eric J. Seibel
  • Patent number: 11330170
    Abstract: Methods and systems for acquiring and/or projecting images from and/or to a target area are provided. Such a method or system can include an optical fiber assembly which may be driven to scan the target area in a scan pattern. The optical fiber assembly may provide multiple effective light sources (e.g., via a plurality of optical fibers) that are axially staggered with respect to an optical system located between the optical fiber and the target area. The optical system may be operable to focus and/or redirect the light from the multiple light sources onto separate focal planes. A composite image may be generated based on light reflected from and/or projected onto the separate focal planes. The composite image may have an extended depth of focus or field spanning over a distance between the separate focal planes while maintaining or improving image resolution.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: May 10, 2022
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Eric J. Seibel, Brian T. Schowengerdt
  • Publication number: 20220061825
    Abstract: A monitoring system includes a light source, a light detector, a processor, and a non-transitory computer readable medium storing instructions that, when executed by the processor, cause the monitoring system to perform functions. The functions include illuminating, via the light source, a biological sample that is within a container while a fixation process is performed on the biological sample. The functions also include determining, via the light detector, that an optical transmittance of the biological sample satisfies a condition. The functions also include ceasing the fixation process in response to determining that the optical transmittance of the biological sample satisfies the condition.
    Type: Application
    Filed: August 12, 2021
    Publication date: March 3, 2022
    Inventors: Eric J. Seibel, Saniel D. Lim, Mark E. Fauver
  • Patent number: 11252385
    Abstract: Image projection devices, high-speed fiber scanned displays and related methods for projecting an image onto a surface and interfacing with the projected image are provided. A method for projecting one or more images and obtaining feedback with an optical input-output assembly is provided. The input-output assembly comprising a light-scanning optical fiber and a sensor. The method includes generating a sequence of light in response to one or more image representations and a scan pattern of the optical fiber, articulating the optical fiber in the scan pattern, projecting the sequence of light from the articulated optical fiber, and generating a feedback signal with the sensor in response to reflections of the sequence of light.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: February 15, 2022
    Assignee: University of Washington
    Inventors: Charles D. Melville, Richard S. Johnston, Cameron M. Lee, Eric J. Seibel, Brian T. Schowengerdt
  • Publication number: 20220015614
    Abstract: Apparatuses and methods for imaging objects in cardiovascular system are described. In one embodiment, an apparatus includes a catheter configured to traverse a blood vessel. The catheter includes: a flushing fluid inlet configured to inject a flushing fluid into the blood vessel; a flushing fluid outlet configured to evacuate the flushing fluid from the blood vessel; and an imaging module configured to image an object in the blood vessel. A first volumetric flow of the flushing fluid into the blood vessel and a second volumetric flow of the flushing fluid out of the blood vessel are synchronized to maintain a pressure in the blood vessel below a predetermined threshold.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 20, 2022
    Inventors: Syed Faisal, Alberto Aliseda, Eric J. Seibel
  • Publication number: 20220015629
    Abstract: A retina image template matching method is based on the registration and comparison between the images captured with portable low-cost fundus cameras (e.g., a consumer grade camera typically incorporated into a smartphone or tablet computer) and a baseline image. The method solves the challenges posed by registering small and low-quality retinal template images captured with such cameras. Our method combines dimension reduction methods with a mutual information (MI) based image registration technique. In particular, principle components analysis (PCA) and optionally block PCA are used as a dimension reduction method to localize the template image coarsely to the baseline image, then the resulting displacement parameters are used to initialize the MI metric optimization for registration of the template image with the closest region of the baseline image.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 20, 2022
    Applicant: MAGIC LEAP, INC.
    Inventors: Eric J. SEIBEL, Chen GONG, Steven L. BRUNTON, Nils Benjamin ERICHSON, Laura TRUTOIU, Brian T. SCHOWENGERDT
  • Publication number: 20210397254
    Abstract: Techniques for tracking eye movement in an augmented reality system identify a plurality of base images of an object or a portion thereof. A search image may be generated based at least in part upon at least some of the plurality of base images. A deep learning result may be generated at least by performing a deep learning process on a base image using a neural network in a deep learning mode. A captured image may be localized at least by performing an image registration process on the captured image and the search image using a Kalman filter model and the deep learning result.
    Type: Application
    Filed: June 11, 2021
    Publication date: December 23, 2021
    Applicants: UNIVERSITY OF WASHINGTON, MAGIC LEAP, INC.
    Inventors: Eric J. SEIBEL, Steven L. BRUNTON, Chen GONG, Brian T. SCHOWENGERDT
  • Publication number: 20210263051
    Abstract: Systems and methods for accurate optical pH sensing of biofilms are disclosed. In one embodiment, a method of measuring an extracellular pH level using multiple wavelengths emitted by a fluorescent substance includes: exciting the fluorescent substance at an excitation wavelength; measuring a first fluorescence intensity at a first wavelength of a fluorescence emission; and measuring a second fluorescence intensity at a second wavelength of the fluorescence emission. The second wavelength is different from the first wavelength. The method also includes determining the extracellular pH level based on the first fluorescence intensity at the first wavelength and the second fluorescence intensity at the second wavelength.
    Type: Application
    Filed: July 19, 2019
    Publication date: August 26, 2021
    Applicant: University of Washington
    Inventors: Eric J. Seibel, Leonard Y. Nelson, Manuja Sharma, Jasmine Graham
  • Patent number: 10888230
    Abstract: Methods and systems for detecting early stage dental caries and decays are provided. In particular, in an embodiment, laser-induced autofluorescence (AF) from multiple excitation wavelengths is obtained and analyzed. Endogenous fluorophores residing in the enamel naturally fluoresce when illuminated by wavelengths ranging from ultraviolet into the visible spectrum. The relative intensities of the AF emission changes between different excitation wavelengths when the enamel changes from healthy to demineralized. By taking a ratio of AF emission spectra integrals between different excitation wavelengths, a standard is created wherein changes in AF ratios within a tooth are quantified and serve as indicators of early stage enamel demineralization. The techniques described herein may be used in conjunction with a scanning fiber endoscope (SFE) to provide a reliable, safe and low-cost means for identifying dental caries or decays.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: January 12, 2021
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Eric J. Seibel, Leonard Y. Nelson
  • Patent number: 10852291
    Abstract: An example fluidic device may include a plurality of channels including one or more curved channels having a channel input and a channel output. Each of the one or more curved channels may have a substantially circular cross-section. The fluidic device may also include an input interface between the channel input of the one or more curved channels and an exterior of the fluidic device. The input interface may be configured to receive a biological tissue sample. The fluidic device may also include an output interface between the channel output of the one or more curved channels and the exterior of the fluidic device.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: December 1, 2020
    Assignee: University of Washington
    Inventors: Eric J. Seibel, Ronnie Das, Christopher W. Burfeind, Thu-mai Nguyen