Patents by Inventor Eric John Wilkowske

Eric John Wilkowske has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11234612
    Abstract: A medical device can be localized by providing at least three non-colinear localization elements (e.g., electrodes) thereon. Once placed in a non-ionizing localization field, three adjacent localization elements, at least one of which will typically be a spot electrode, may be selected, and the non-ionizing localization field may be used to measure their locations. A cylinder is defined to fit the measured locations of the selected localization elements. The cylinder is rotationally oriented using the measured location of a spot electrode. Location and rotational attitude information may be used to construct a three-dimensional representation of the medical device within the localization field. The electrodes may be provided on the medical device or on a sheath into which the medical device is inserted. The invention also provides systems and methods for identifying and calibrating deflection planes where the medical device and/or sheath are deflectable.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: February 1, 2022
    Assignee: ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: John Anderson Hauck, Lubomir Velitchkov Dragnev, Don Curtis Deno, Eric John Wilkowske
  • Patent number: 10493708
    Abstract: A method of manufacturing a flexible tubular body for a medical device includes extruding an inner layer from a thermoplastic polymer, pulling it over a mandrel, and tightening it down. If wire lumens were not formed in the inner layer when extruded, polymer spaghetti tubes with wire lumens are laid along the outer surface of the inner layer. Deflection wires are fed into the wire lumens. A wire braid is placed over the inner layer (and spaghetti tubes, if present) and tightened down. The components are encased in an outer polymer layer and a heat shrinkable tube. Pressurized fluid is injected into each wire lumen to maintain the internal diameter thereof greater than the diameter of the deflection wire received therein. Heat is applied to the assembled components, causing the layers to laminate. Once the laminated body has cooled, the heat-shrinkable tube is removed.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: December 3, 2019
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Eric John Wilkowske, Allan Manuel Fuentes, Xiaoping Guo, Xuan Yen Khieu, Linda Kay Nemec, Richard E. Stehr
  • Publication number: 20180078173
    Abstract: A medical device can be localized by providing at least three non-colinear localization elements (e.g., electrodes) thereon. Once placed in a non-ionizing localization field, three adjacent localization elements, at least one of which will typically be a spot electrode, may be selected, and the non-ionizing localization field may be used to measure their locations. A cylinder is defined to fit the measured locations of the selected localization elements. The cylinder is rotationally oriented using the measured location of a spot electrode. Location and rotational attitude information may be used to construct a three-dimensional representation of the medical device within the localization field. The electrodes may be provided on the medical device or on a sheath into which the medical device is inserted. The invention also provides systems and methods for identifying and calibrating deflection planes where the medical device and/or sheath are deflectable.
    Type: Application
    Filed: October 4, 2017
    Publication date: March 22, 2018
    Inventors: John Anderson Hauck, Lubomir Velitchkov Dragnev, Don Curtis Deno, Eric John Wilkowske
  • Patent number: 9808180
    Abstract: A medical device can be localized by providing at least three non-colinear localization elements (e.g., electrodes) thereon. Once placed in a non-ionizing localization field, three adjacent localization elements, at least one of which will typically be a spot electrode, may be selected, and the non-ionizing localization field may be used to measure their locations. A cylinder is defined to fit the measured locations of the selected localization elements. The cylinder is rotationally oriented using the measured location of a spot electrode. Location and rotational attitude information may be used to construct a three-dimensional representation of the medical device within the localization field. The electrodes may be provided on the medical device or on a sheath into which the medical device is inserted. The invention also provides systems and methods for identifying and calibrating deflection planes where the medical device and/or sheath are deflectable.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: November 7, 2017
    Assignee: St. Jude Medical, Atrial Fibrillation Divison, Inc.
    Inventors: John Anderson Hauck, Lubomir Velitchkov Dragnev, Don Curtis Deno, Eric John Wilkowske
  • Publication number: 20140275920
    Abstract: A medical device can be localized by providing at least three non-colinear localization elements (e.g., electrodes) thereon. Once placed in a non-ionizing localization field, three adjacent localization elements, at least one of which will typically be a spot electrode, may be selected, and the non-ionizing localization field may be used to measure their locations. A cylinder is defined to fit the measured locations of the selected localization elements. The cylinder is rotationally oriented using the measured location of a spot electrode. Location and rotational attitude information may be used to construct a three-dimensional representation of the medical device within the localization field. The electrodes may be provided on the medical device or on a sheath into which the medical device is inserted. The invention also provides systems and methods for identifying and calibrating deflection planes where the medical device and/or sheath are deflectable.
    Type: Application
    Filed: April 8, 2014
    Publication date: September 18, 2014
    Applicant: St. Jude Medical. Atrial Fibrillation Division, Inc.
    Inventors: John Anderson Hauck, Lubomir Velitchkov Dragnev, Don Curtis Deno, Eric John Wilkowske
  • Publication number: 20130300036
    Abstract: The present invention is a method of manufacturing a flexible tubular body for catheter, sheath or similar medical device. The method comprises pre-extruding an inner layer of the body from a thermoplastic polymer and then pulling the inner layer over a mandrel and tightening the layer down. If wire lumens were not integrally formed in the inner layer when pre-extruded, then two polymer spaghetti tubes, each with wire lumens, are laid 180 degrees apart axially along the outer surface of the inner layer. Deflection wires are then fed into the wire lumens. A cylindrical wire braid is woven or pulled over the inner layer (and the spaghetti tubes, as the case may be) and tightened down. The aforementioned components are then encased in an outer polymer layer. A heat-shrinkable tube is then placed over the outer layer.
    Type: Application
    Filed: September 24, 2012
    Publication date: November 14, 2013
    Inventors: Eric John Wilkowske, Allan Manuel Fuentes, Xiaoping Guo, Xuan Yen Khieu, Linda Kay Nemec, Richard E. Stehr
  • Patent number: 8273285
    Abstract: The present invention is a method of manufacturing a flexible tubular body for catheter, sheath or similar medical device. The method comprises pre-extruding an inner layer of the body from a thermoplastic polymer and then pulling the inner layer over a mandrel and tightening the layer down. If wire lumens were not integrally formed in the inner layer when pre-extruded, then two polymer spaghetti tubes, each with wire lumens, are laid 180 degrees apart axially along the outer surface of the inner layer. Deflection wires are then fed into the wire lumens. A cylindrical wire braid is woven or pulled over the inner layer (and the spaghetti tubes, as the case may be) and tightened down. The aforementioned components are then encased in an outer polymer layer. A heat-shrinkable tube is then placed over the outer layer.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: September 25, 2012
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Eric John Wilkowske, Allan Manuel Fuentes, Xiaoping Guo, Xuan Yen Khieu, Linda Kay Nemec, Richard E. Stehr