Patents by Inventor Eric Jon Ojard

Eric Jon Ojard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220300772
    Abstract: The technology disclosed corrects inter-cluster intensity profile variation for improved base calling on a cluster-by-cluster basis. The technology disclosed accesses current intensity data and historic intensity data of a target cluster, where the current intensity data is for a current sequencing cycle and the historic intensity data is for one or more preceding sequencing cycles. A first accumulated intensity correction parameter is determined by accumulating distribution intensities measured for the target cluster at the current and preceding sequencing cycles. A second accumulated intensity correction parameter is determined by accumulating intensity errors measured for the target cluster at the current and preceding sequencing cycles. Based on the first and second accumulated intensity correction parameters, next intensity data for a next sequencing cycle is corrected to generate corrected next intensity data, which is used to base call the target cluster at the next sequencing cycle.
    Type: Application
    Filed: May 24, 2022
    Publication date: September 22, 2022
    Applicant: ILLUMINA, INC.
    Inventors: Eric Jon Ojard, Abde Ali Hunaid Kagalwalla, Rami Mehio, Nitin Udpa, Gavin Derek Parnaby, John S. Vieceli
  • Patent number: 11361194
    Abstract: The technology disclosed generates variation correction coefficients on a cluster-by-cluster basis to correct inter-cluster intensity profile variation for improved base calling. An amplification coefficient corrects scale variation. Channel-specific offset coefficients correct shift variation along respective intensity channels. The variation correction coefficients for a target cluster are generated based on combining analysis of historic intensity data generated for the target cluster at preceding sequencing cycles of a sequencing run with analysis of current intensity data generated for the target cluster at a current sequencing cycle of the sequencing run. The variation correction coefficients are then used to correct next intensity data generated for the target cluster at a next sequencing cycle of the sequencing run. The corrected next intensity data is then used to base call the target cluster at the next sequencing cycle.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: June 14, 2022
    Assignee: ILLUMINA, INC.
    Inventors: Eric Jon Ojard, Abde Ali Hunaid Kagalwalla, Rami Mehio, Nitin Udpa, Gavin Derek Parnaby, John S. Vieceli
  • Publication number: 20220129711
    Abstract: The technology disclosed generates variation correction coefficients on a cluster-by-cluster basis to correct inter-cluster intensity profile variation for improved base calling. An amplification coefficient corrects scale variation. Channel-specific offset coefficients correct shift variation along respective intensity channels. The variation correction coefficients for a target cluster are generated based on combining analysis of historic intensity data generated for the target cluster at preceding sequencing cycles of a sequencing run with analysis of current intensity data generated for the target cluster at a current sequencing cycle of the sequencing run. The variation correction coefficients are then used to correct next intensity data generated for the target cluster at a next sequencing cycle of the sequencing run. The corrected next intensity data is then used to base call the target cluster at the next sequencing cycle.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 28, 2022
    Applicant: ILLUMINA, INC.
    Inventors: Eric Jon OJARD, Abde Ali Hunaid KAGALWALLA, Rami MEHIO, Nitin UDPA, Gavin Derek PARNABY, John S. VIECELI
  • Publication number: 20220067418
    Abstract: The technology disclosed relates to equalizer-based intensity correction for base calling. In particular, the technology disclosed relates to accessing an image whose pixels depict intensity emissions from a target cluster and intensity emissions from additional adjacent clusters, selecting a lookup table that contains pixel coefficients that are configured to increase a signal-to-noise ratio, applying the pixel coefficients to intensity values of the pixels in the image to produce an output, and base calling the target cluster based on the output.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Applicant: ILLUMINA, INC.
    Inventors: Eric Jon OJARD, Rami MEHIO, Gavin Derek PARNABY, Nitin UDPA, John S. VIECELI
  • Patent number: 11188778
    Abstract: The technology disclosed attenuates spatial crosstalk from sequencing images for base calling. In particular, the technology disclosed accesses an image whose pixels depict intensity emissions from a target cluster and intensity emissions from additional adjacent clusters. The pixels include a center pixel that contains a center of the target cluster. Each pixel in the pixels is divisible into a plurality of subpixels. Depending upon a particular subpixel, in a plurality of subpixels of the center pixel, which contains the center of the target cluster, the technology disclosed selects, from a bank of subpixel lookup tables, a subpixel lookup table that corresponds to the particular subpixel. The selected subpixel lookup table contains pixel coefficients that are configured to maximizes a signal-to-noise ratio. The technology disclosed element-wise multiplies the pixel coefficients with the pixels and determines a weighted sum.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: November 30, 2021
    Assignee: Illumina, Inc.
    Inventors: Eric Jon Ojard, Rami Mehio, Gavin Derek Parnaby, Nitin Udpa, John S. Vieceli
  • Publication number: 20210350163
    Abstract: The technology disclosed attenuates spatial crosstalk from sequencing images for base calling. In particular, the technology disclosed accesses an image whose pixels depict intensity emissions from a target cluster and intensity emissions from additional adjacent clusters. The pixels include a center pixel that contains a center of the target cluster. Each pixel in the pixels is divisible into a plurality of subpixels. Depending upon a particular subpixel, in a plurality of subpixels of the center pixel, which contains the center of the target cluster, the technology disclosed selects, from a bank of subpixel lookup tables, a subpixel lookup table that corresponds to the particular subpixel. The selected subpixel lookup table contains pixel coefficients that are configured to maximizes a signal-to-noise ratio. The technology disclosed element-wise multiplies the pixel coefficients with the pixels and determines a weighted sum.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 11, 2021
    Applicant: Illumina, Inc.
    Inventors: Eric Jon OJARD, Rami MEHIO, Gavin Derek PARNABY, Nitin UDPA, John S. VIECELI
  • Publication number: 20190259468
    Abstract: Methods, systems, and apparatus, including computer programs for improving the accuracy of a variant call by accounting for indications of correlated error events. In one aspect, a method may include actions of accessing a pileup of sequence reads aligned to a first region of a reference genome, obtaining information describing one or more characteristics of each of the plurality of reads of the pileup, providing one or more inputs to a probability model describing the one or more characteristics of the plurality of reads of the pileup, wherein the probability model is configured to determine a score, for each hypothesis of one or more hypotheses selected based on the one or more inputs, that indicates whether each hypothesis is true, obtaining output information for each of the one or more hypotheses, and determining, based on the obtained output information, a likelihood that a true variant exists at the first position.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 22, 2019
    Inventor: Eric Jon Ojard
  • Patent number: 9374245
    Abstract: A radio device receives a band-limited signal and estimates signal components beyond the band edges to extend the signal and eliminate the band-limited effects. The extended signal is transformed to the time domain to produce an estimate of the true time domain channel.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 21, 2016
    Assignee: Broadcom Corporation
    Inventors: David Christopher Garrett, Nihar Jindal, Eric Jon Ojard, Alfonso Cano Pleite
  • Publication number: 20150036772
    Abstract: A radio device receives a band-limited signal and estimates signal components beyond the band edges to extend the signal and eliminate the band-limited effects. The extended signal is transformed to the time domain to produce an estimate of the true time domain channel.
    Type: Application
    Filed: September 6, 2013
    Publication date: February 5, 2015
    Applicant: Broadcom Corporation
    Inventors: David Christopher Garrett, Nihar Jindal, Eric Jon Ojard, Alfonso Cano Pleite