Patents by Inventor Eric Kazyak

Eric Kazyak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361350
    Abstract: A method for forming an electrochemical device may comprise the steps of: (a) exposing electrode material particles to a lithium-containing precursor followed by an oxygen-containing precursor to form a coating on the electrode material particles; (b) forming a slurry comprising the coated electrode material particles; (c) casting the slurry to form a layer; (d) calendering the layer to form one or more electrodes (anode and/or cathode); (e) positioning a separator between the anode and the cathode to form a cell structure; and (f) positioning the cell structure in a liquid electrolyte, wherein the electrolyte is essentially free of a solvent that forms a solid electrolyte interphase on the anode and/or cathode. The method reduces the need for slow, costly preconditioning to be performed following lithium-ion battery cell assembly, and enables the use of ethylene carbonate-free electrolytes, thereby improving cycling stability at high voltages for lithium-ion batteries.
    Type: Application
    Filed: May 4, 2023
    Publication date: November 9, 2023
    Inventors: Neil P. Dasgupta, Yuxin Chen, Kuan-Hung Chen, Eric Kazyak
  • Patent number: 11342176
    Abstract: An integrated electrohydrodynamic jet printing and spatial atomic layer deposition system for conducting nanofabrication includes an electrohydrodynamic jet printing station that includes an E-jet printing nozzle, a spatial atomic layer deposition station that includes a zoned ALD precursor gas distributor that discharges linear zone-separated first and second ALD precursor gases, a heatable substrate plate supported on a motion actuator controllable to move the substrate plate in three dimensions, and a conveyor on which the motion actuator is supported. The conveyor is operative to move the motion actuator between the electrohydrodynamic jet printing station and the spatial atomic layer deposition station so that the substrate plate is conveyable between a printing window of the E-jet printing nozzle and a deposition window of the zoned ALD precursor gas distributor, respectively. A method of conducting area-selective atomic layer deposition is also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 24, 2022
    Assignee: The Regents of the University of Michigan
    Inventors: Mattison Rose, Kira Barton, Neil Dasgupta, Lauren Ransohoff, Ellis Herman, Orlando Trejo, Carli Huber, Tae H. Cho, Eric Kazyak, Christopher P. Pannier
  • Publication number: 20210376310
    Abstract: A method of making an ionically conductive layer for an electrochemical device is disclosed. A film is coated on electrode material particles or post-calendered electrodes. This coating may be a lithium borate-carbonate film deposited by atomic layer deposition. One example method includes the steps of: (a) exposing a substrate including an electrode material to a lithium-containing precursor followed by an oxygen-containing precursor; and (b) exposing the substrate to a boron-containing precursor followed by the oxygen-containing precursor.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 2, 2021
    Inventors: NEIL P. DASGUPTA, KUAN-HUNG CHEN, ERIC KAZYAK
  • Patent number: 11145861
    Abstract: Disclosed are methods for pre-conditioning or pre-treating the surface of a metal (e.g., lithium) electrode such that the cycle life and efficiency of the electrode within an electrochemical cell are improved through the prevention of dendrite growth. The pretreatment process includes the use of an alternating current to modify the surface properties of the metal electrode, such that a more uniform flux of metal ions is transferred across the electrode-electrolyte Interface in subsequent electrodeposition and electrodissolution processes. As a result, an electrode treated with such a process exhibits improved performance and durability, including markedly lower overpotentials and largely improved metal (e.g., lithium) retention in strip plate tests as compared with untreated electrodes.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 12, 2021
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Neil P. Dasgupta, Kevin N. Wood, Kuan-Hung Chen, Eric Kazyak
  • Publication number: 20210043967
    Abstract: Disclosed are electrochemical devices, such as lithium metal batteries using a solid state electrolyte. A means is disclosed to achieve relevant charging rates without short-circuiting a cell of the electrochemical device by limiting the electrode area, positioning the electrode where least defect population exist and controlling the external variables for stable lithium electrodeposition. Also disclosed is a method for visualizing metal propagation from an anode into a solid state electrolyte during cycling of an electrochemical cell comprising the anode and the solid state electrolyte.
    Type: Application
    Filed: August 10, 2020
    Publication date: February 11, 2021
    Inventors: Jeff Sakamoto, Maria Garcia Mendez, Neil Dasgupta, Eric Kazyak
  • Publication number: 20190131622
    Abstract: Disclosed are methods for pre-conditioning or pre-treating the surface of a metal (e.g., lithium) electrode such that the cycle life and efficiency of the electrode within an electrochemical cell are improved through the prevention of dendrite growth. The pretreatment process includes the use of an alternating current to modify the surface properties of the metal electrode, such that a more uniform flux of metal ions is transferred across the electrode-electrolyte Interface in subsequent electrodeposition and electrodissolution processes. As a result, an electrode treated with such a process exhibits improved performance and durability, including markedly lower overpotentials and largely improved metal (e.g., lithium) retention in strip plate tests as compared with untreated electrodes.
    Type: Application
    Filed: April 17, 2017
    Publication date: May 2, 2019
    Inventors: Neil P. Dasgupta, Kevin N. Wood, Kuan-Hung Chen, Eric Kazyak
  • Publication number: 20190006707
    Abstract: A method is disclosed for suppressing propagation of a metal in a solid state electrolyte during cycling of an electrochemical device including the solid state electrolyte and an electrode comprising the metal. One method comprises forming the solid state electrolyte such that the solid state electrolyte has a structure comprising a plurality of grains of a metal-ion conductive material and a grain boundary phase located at some or all of grain boundaries between the grains, wherein the grain boundary phase suppresses propagation of the metal in the solid state electrolyte during cycling. Another method comprises forming the solid state electrolyte such that the solid state electrolyte is a single crystal.
    Type: Application
    Filed: June 6, 2018
    Publication date: January 3, 2019
    Inventors: Jeffrey Sakamoto, Travis Thompson, Asma Sharafi, Nathan Taylor, Neil P. Dasgupta, Eric Kazyak