Patents by Inventor Eric Kurman

Eric Kurman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9664974
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 30, 2017
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Patent number: 9477129
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: October 25, 2016
    Assignee: View, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20150060264
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Patent number: 8432603
    Abstract: Prior electrochromic devices frequently suffer from poor reliability and poor performance. Some of the difficulties result from inappropriate design and construction of the devices. In order to improve device reliability two layers of an electrochromic device, the counter electrode layer and the electrochromic layer, can each be fabricated to include defined amounts of lithium. Further, the electrochromic device may be subjected to a multistep thermochemical conditioning operation to improve performance. Additionally, careful choice of the materials and morphology of some components of the electrochromic device provides improvements in performance and reliability. In some devices, all layers of the device are entirely solid and inorganic.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 30, 2013
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Eric Kurman, Mark Kozlowski, Mike Scobey, Jeremy Dixon, Anshu Pradhan
  • Patent number: 8243357
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 14, 2012
    Assignee: Soladigm, Inc.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20110211247
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: May 11, 2011
    Publication date: September 1, 2011
    Applicant: SOLADIGM, INC.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki
  • Publication number: 20100245973
    Abstract: Prior electrochromic devices frequently suffer from poor reliability and poor performance. Some of the difficulties result from inappropriate design and construction of the devices. In order to improve device reliability two layers of an electrochromic device, the counter electrode layer and the electrochromic layer, can each be fabricated to include defined amounts of lithium. Further, the electrochromic device may be subjected to a multistep thermochemical conditioning operation to improve performance. Additionally, careful choice of the materials and morphology of some components of the electrochromic device provides improvements in performance and reliability. In some devices, all layers of the device are entirely solid and inorganic.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 30, 2010
    Applicant: SOLADIGM, INC.
    Inventors: Zhongchun Wang, Eric Kurman, Mark Kozlowski, Mike Scobey, Jeremy Dixon, Anshu Pradhan
  • Publication number: 20100243427
    Abstract: Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition.
    Type: Application
    Filed: December 22, 2009
    Publication date: September 30, 2010
    Applicant: SOLADIGM, INC.
    Inventors: Mark Kozlowski, Eric Kurman, Zhongchun Wang, Mike Scobey, Jeremy Dixon, Anshu Pradhan, Robert Rozbicki