Patents by Inventor Eric L. Thompson

Eric L. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9722257
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: August 1, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 9287569
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: March 15, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 9281536
    Abstract: A fuel cell including at least one of a hydrophilic interlayer and a flow field treated to impart hydrophilic properties is disclosed, wherein the hydrophilic interlayer and the treated flow field militate against water accumulation in ultrathin electrodes of the fuel cell, particularly for cool-start operating conditions (i.e. about 0° C. to about 60° C.).
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 8, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Patent number: 8735023
    Abstract: One embodiment includes at least one of the anode and cathode of a fuel cell comprises a first layer and a second layer in intimate contact with each other. Both the first layer and the second layer comprise a catalyst capable of catalyzing an electrochemical reaction of a reactant gas. The second layer has a higher porosity than the first layer. A membrane electrode assembly (MEA) based on the layered electrode configuration and a process of making a fuel cell are also described.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Patent number: 8535842
    Abstract: Combustion heaters having internal combustion chambers are located adjacent the end cells of a stack of fuel cells to directly, conductively heat the end cells during cold start-up of the stack. Similar heater(s) may also be located within the stack when cold starting under extremely cold conditions. A method of combustion thawing a fuel cell stack is described.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: September 17, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric L. Thompson, Robert L. Fuss
  • Patent number: 8178252
    Abstract: A method of operating a fuel cell system is disclosed, the method including the steps of providing a fuel cell stack including a plurality of fuel cell assemblies, each fuel cell assembly having a proton exchange membrane disposed between a plurality of fuel cell plates, wherein water is purged from the fuel cell system during a shutdown operation, and a current is produced in the fuel cell system following the shutdown purge to produce product water to hydrate the proton exchange membrane.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: May 15, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Eric L. Thompson
  • Patent number: 8158296
    Abstract: Systems of checking thermal-induced circulation of a coolant in a fuel cell stack are disclosed. The system includes coolant inlet and outlet lines extending from a fuel cell stack. A pump and a radiator are confluently connected to the coolant inlet and coolant outlet lines. In one embodiment, a valve (either check type or automatic type) is provided in the coolant outlet line at the bottom of the fuel cell stack to prevent the flow of cold coolant from the coolant outlet line into the fuel cell stack upon start-up of the fuel cell stack. In another embodiment, a valve (either one-way flow control type or automatic type) is provided in the coolant inlet line at the top of the fuel cell stack. A method of checking thermal-induced circulation of a coolant in a fuel cell stack is also disclosed.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Stephen Farris, Martin M. Hoch, Eric L. Thompson, James S. Siepierski
  • Publication number: 20110143257
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Application
    Filed: March 8, 2010
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Publication number: 20110143254
    Abstract: One embodiment includes at least one of the anode and cathode of a fuel cell comprises a first layer and a second layer in intimate contact with each other. Both the first layer and the second layer comprise a catalyst capable of catalyzing an electrochemical reaction of a reactant gas. The second layer has a higher porosity than the first layer. A membrane electrode assembly (MEA) based on the layered electrode configuration and a process of making a fuel cell are also described.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Publication number: 20110143256
    Abstract: One embodiment includes a method of forming a hydrophilic particle containing electrode including providing a catalyst; providing hydrophilic particles suspended in a liquid to form a liquid suspension; contacting said catalyst with said liquid suspension; and, drying said liquid suspension contacting said catalyst to leave said hydrophilic particles attached to said catalyst.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Publication number: 20100291456
    Abstract: Systems of checking thermal-induced circulation of a coolant in a fuel cell stack are disclosed. The system includes coolant inlet and outlet lines extending from a fuel cell stack. A pump and a radiator are confluently connected to the coolant inlet and coolant outlet lines. In one embodiment, a valve (either check type or automatic type) is provided in the coolant outlet line at the bottom of the fuel cell stack to prevent the flow of cold coolant from the coolant outlet line into the fuel cell stack upon start-up of the fuel cell stack. In another embodiment, a valve (either one-way flow control type or automatic type) is provided in the coolant inlet line at the top of the fuel cell stack. A method of checking thermal-induced circulation of a coolant in a fuel cell stack is also disclosed.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Stephen Farris, Martin M. Hoch, Eric L. Thompson, James S. Siepierski
  • Patent number: 7781113
    Abstract: Systems of checking thermal-induced circulation of a coolant in a fuel cell stack are disclosed. The system includes coolant inlet and outlet lines extending from a fuel cell stack. A pump and a radiator are confluently connected to the coolant inlet and coolant outlet lines. In one embodiment, a valve (either check type or automatic type) is provided in the coolant outlet line at the bottom of the fuel cell stack to prevent the flow of cold coolant from the coolant outlet line into the fuel cell stack upon start-up of the fuel cell stack. In another embodiment, a valve (either one-way flow control type or automatic type) is provided in the coolant inlet line at the top of the fuel cell stack. A method of checking thermal-induced circulation of a coolant in a fuel cell stack is also disclosed.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: August 24, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Stephen Farris, Martin M. Hoch, Eric L. Thompson, James S. Siepierski
  • Publication number: 20100081025
    Abstract: A fuel cell including at least one of a hydrophilic interlayer and a flow field treated to impart hydrophilic properties is disclosed, wherein the hydrophilic interlayer and the treated flow field militate against water accumulation in ultrathin electrodes of the fuel cell, particularly for cool-start operating conditions (i.e. about 0° C. to about 60° C.).
    Type: Application
    Filed: October 1, 2008
    Publication date: April 1, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Patent number: 7662495
    Abstract: A passive restriction passageway (for example, a passive capillary valve or a restricting orifice) positioned to drain accumulated liquid from a fuel cell reactant flow channel is used in conjunction with a control element for periodically adjusting the pressure across the passageway. The control element intermittently adjusts pressure across the passageway to enable liquid flow through the passageway. The restriction passageways and the adjustment of pressure periodically move liquid water through the passageways to drain liquid buildup from the reactant supply channels. Together, these features enable sustained performance from the fuel cell during operation and also prevent damage to the fuel cell when the fuel cell is exposed to freezing temperatures (especially after shutdown of the fuel cell).
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: February 16, 2010
    Inventors: Pinkhas A Rapaport, Eric L Thompson
  • Publication number: 20100035124
    Abstract: A catalyst ink composition for a fuel cell electrode is provided. The catalyst ink composition includes: an ionomer; at least one solvent; a quantity of nanostructured thin film support cores; a catalyst formed from a precious metal, the catalyst coated onto the nanostructured thin film support cores; and a quantity of particles. The particles are configured to provide an electrode porosity that militates against excess water accumulation in the electrode formed from the ink composition upon a drying thereof. An electrode for a fuel cell and a method of fabricating the electrode with the catalyst ink composition are also provided.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 11, 2010
    Applicant: GM CLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Eric L. Thompson, Anusorn Kongkanand, Frederick T. Wagner
  • Patent number: 7579097
    Abstract: A method and apparatus according to the present invention controls current that is supplied to a load by a fuel cell stack. A minimum voltage of a plurality of fuel cells in a fuel cell stack is monitored. The current load supplied by the fuel cell stack is increased if the minimum fuel cell voltage value exceeds a first voltage value. The current load supplied by the fuel cell stack is decreased if the minimum fuel cell voltage value is less than a second voltage value. The current load supplied by the fuel cell is maintained if the minimum fuel cell voltage is between the first and second voltage values. The current load is increased and decreased based upon a difference between the minimum fuel cell voltage and the first voltage value.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: August 25, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Eric L Thompson
  • Patent number: 7569299
    Abstract: A gasket for a fuel cell, wherein the gasket includes the use of two or more different materials as the gasket. For example, ethylene propylene diene monomer (EPDM) and/or the like, or another more chemically inert gasket material, is located inside or on an inboard position and is the wetted material that is exposed to the fuel cell operating environment. Silicone and/or the like, or another potentially contaminating material with better cold temperature sealability, is located outside or on an outboard position and does not come in contact with the fuel cell internal environment. One method of constructing such a gasket would be two include two parallel bead traces of the gasket materials on a polyimide (e.g., KAPTON®) carrier, or the like.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 4, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Eric L. Thompson, Gerald W. Fly
  • Publication number: 20090155634
    Abstract: A method of operating a fuel cell system is disclosed, the method including the steps of providing a fuel cell stack including a plurality of fuel cell assemblies, each fuel cell assembly having a proton exchange membrane disposed between a plurality of fuel cell plates, wherein water is purged from the fuel cell system during a shutdown operation, and a current is produced in the fuel cell system following the shutdown purge to produce product water to hydrate the proton exchange membrane.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventor: Eric L. Thompson
  • Patent number: 7393602
    Abstract: A system and method for determining the internal temperature of a fuel cell stack during stack start-up so as to start a cooling fluid flow before the internal temperature of the stack rises above a temperature that might damage the fuel cells within the stack. The system and method include determining an initial temperature from either an ambient temperature sensor or a sensor in the cooling fluid manifold in the stack, measuring the voltage of the stack and the current from the stack, and from these values determining the waste heat from the stack to determine its temperature. If hydrogen is sent to the cathode side of the stack during the start-up, then the system and method also include determining the flow rate of the hydrogen.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 1, 2008
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Eric L. Thompson, Yan Zhang
  • Patent number: 7348094
    Abstract: The present invention is directed to mitigating overuse of limited membrane regions in electrochemical conversion assemblies, particularly under cold start conditions. In accordance with one embodiment of the present invention, the anode and/or cathode flowfield plates of an electrochemical conversion assembly are configured such that the fluid header region defines an anode fluid header, a cathode fluid header, and a coolant fluid header configured such that a feed region of the plate defines an array of substantially linear fluid channels extending from an acutely angled header/feed interface defined on the plate to a feed/active interface defined across the entire active area of the plate.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: March 25, 2008
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Eric L. Thompson, Steven G. Goebel, Scott Ofslager