Patents by Inventor Eric Louis Schumann
Eric Louis Schumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10190651Abstract: An assembly for multi-stage damping comprising a damping unit 20 including a decoupler 36 defining an annular zone 70 surrounding a circular zone 68. The annular zone 70 extends inwardly from an outer ring 38 to define a ring shape for flexing with the circular zone 68 in a first mode 72 to maximize the potential volume of displacement between a first chamber 30 and a second chamber 32. Additionally, the assembly provides for flexing the annular zone 70 independently of the circular zone 68 in a second mode 74 to decrease the potential volume of displacement of the decoupler 36 between the first chamber 30 and the second chamber 32. The decoupler 36 includes a plurality of rings 38, 46, 54 extending axially from a first surface 40 and a second surface 42 for defining an axial travel limit for the annular zone 70.Type: GrantFiled: May 5, 2017Date of Patent: January 29, 2019Assignee: BeijingWest Industries Co., Ltd.Inventor: Eric Louis Schumann
-
Publication number: 20170363173Abstract: An assembly for multi-stage damping comprising a damping unit 20 including a decoupler 36 defining an annular zone 70 surrounding a circular zone 68. The annular zone 70 extends inwardly from an outer ring 38 to define a ring shape for flexing with the circular zone 68 in a first mode 72 to maximize the potential volume of displacement between a first chamber 30 and a second chamber 32. Additionally, the assembly provides for flexing the annular zone 70 independently of the circular zone 68 in a second mode 74 to decrease the potential volume of displacement of the decoupler 36 between the first chamber 30 and the second chamber 32. The decoupler 36 includes a plurality of rings 38, 46, 54 extending axially from a first surface 40 and a second surface 42 for defining an axial travel limit for the annular zone 70.Type: ApplicationFiled: May 5, 2017Publication date: December 21, 2017Inventor: Eric Louis Schumann
-
Patent number: 9440524Abstract: A mount apparatus (20) for supporting a vibration source on a base is provided. The mount apparatus (20) includes a moving member (134) that is partially disposed in a pumping chamber (64) for moving within the pumping chamber (64) along a first axis (A) to create a volume change in the pumping chamber (64) to maintain the volume of the pumping chamber (64) to prevent a pressure increase in the pumping chamber (64) during the deformation of a flexible body (46) in response to an external excitation to effectively cancel the external excitation. The moving member (134) includes a moveable wall (144) of a flexible material, having a generally hour glass-shape in steady state, and extending between moving member upper and lower ends (140, 142). The moveable wall (144) flexes radially outwardly and inwardly relative to the first axis (A) in response to relative axial movement between the moving member upper and lower ends (140, 142), to amplify the volume change in the pumping chamber (64).Type: GrantFiled: May 27, 2013Date of Patent: September 13, 2016Assignee: BeijingWest Industries, Co., Ltd.Inventors: Alireza Farjoud, David John Barta, Brent Wade Fourman, Chad Michael, Eric Louis Schumann
-
Patent number: 9322451Abstract: A hydraulic mount apparatus (20) for supporting a vibration source is disclosed. The mount apparatus (20) includes a housing (22) that defines a housing chamber (24) separated by a partition assembly (62) into a pumping chamber (64) and a receiving chamber (66), each containing a magnetorheological fluid (68). A flexible body (48) is partially disposed in the pumping chamber (64) for deforming elastically in response to vibrations caused by an external excitation. A fluid passage (106) extends between the pumping chamber (64) and the receiving chamber (66) for passing the fluid therebetween during low frequency vibrations. A piezostack actuator (118) partially extends into the pumping chamber (64) for moving within the pumping chamber (64) for varying the volume of the pumping chamber (64) to prevent a pressure increase in the pressure chamber to substantially cancel relatively high frequency vibrations.Type: GrantFiled: June 7, 2012Date of Patent: April 26, 2016Assignee: Beijing West Industries Co., Ltd.Inventors: Eric Louis Schumann, David John Barta, Brent Wade Fourman
-
Patent number: 9273751Abstract: A tie bar assembly includes front and rear units each including inner inserts interconnected with outer inserts with webs of elastomeric material. A pole sub-assembly is disposed between the units. The pole sub-assembly and the units define front and rear fluid chambers containing a magneto-rheological fluid. Fluid orifices are disposed through the pole sub-assembly for flow of the magneto-rheological fluid between fluid chambers. An electromagnet coil generates an electromagnetic field to affect viscosity of the magneto-rheological fluid. A connecting rod connects inner inserts and is slidably disposed through the pole sub-assembly for causing movement of the magneto-rheological fluid between fluid chambers. A displacement sensor detects movement to generate a signal to the electromagnet coil. Front and rear travel cushions are each disposed on the inner inserts for limiting the movement of the inner inserts toward the pole sub-assembly.Type: GrantFiled: June 4, 2012Date of Patent: March 1, 2016Assignee: BeijingWest Industries, Co. Ltd.Inventors: Stephen Lewis Setty, David John Barta, Brent Wade Fourman, Eric Louis Schumann, Steven E. Pyle
-
Patent number: 9051989Abstract: A magnetorheological fluid-based hydraulic mount apparatus (20, 220) for supporting a vibration source on a base is disclosed. A main fluid passage (104, 304) extends between pumping chamber (64, 264) and receiving chamber (66, 266) for passing the fluid therebetween. Electromagnet coil (98, 298) variably generates a magnetic flux across the main fluid passage to variably change the damping stiffness of the mount. A rate dip track passage (120, 320) extends between the pumping chamber (64, 264) and receiving chamber (66, 266) for oscillating the magnetorheological fluid (68, 268) therethrough to decrease the dynamic stiffness of the mount apparatus (20, 220) at predetermined frequencies.Type: GrantFiled: July 12, 2012Date of Patent: June 9, 2015Assignee: BeijingWest Industries Co., Ltd.Inventors: Eric Louis Schumann, David John Barta, Brent Wade Fourman, Stephen Lewis Setty
-
Publication number: 20140360799Abstract: A mount apparatus (20) for supporting a vibration source on a base is provided. The mount apparatus (20) includes a moving member (134) that is partially disposed in a pumping chamber (64) for moving within the pumping chamber (64) along a first axis (A) to create a volume change in the pumping chamber (64) to maintain the volume of the pumping chamber (64) to prevent a pressure increase in the pumping chamber (64) during the deformation of a flexible body (46) in response to an external excitation to effectively cancel the external excitation. The moving member (134) includes a moveable wall (144) of a flexible material, having a generally hour glass-shape in steady state, and extending between moving member upper and lower ends (140, 142). The moveable wall (144) flexes radially outwardly and inwardly relative to the first axis (A) in response to relative axial movement between the moving member upper and lower ends (140, 142), to amplify the volume change in the pumping chamber (64).Type: ApplicationFiled: May 27, 2013Publication date: December 11, 2014Applicant: BEIJINGWEST INDUSTRIES CO, LTD.Inventors: Alireza Farjoud, David John Barta, Brent Wade Fourman, Chad Michael, Eric Louis Schumann
-
Publication number: 20140217661Abstract: A hydraulic mount apparatus (20) for supporting a vibration source is disclosed. The mount apparatus (20) includes a housing (22) that defines a housing chamber (24) separated by a partition assembly (62) into a pumping chamber (64) and a receiving chamber (66), each containing a magnetorheological fluid (68). A flexible body (48) is partially disposed in the pumping chamber (64) for deforming elastically in response to vibrations caused by an external excitation. A fluid passage (106) extends between the pumping chamber (64) and the receiving chamber (66) for passing the fluid therebetween during low frequency vibrations. A piezostack actuator (118) partially extends into the pumping chamber (64) for moving within the pumping chamber (64) for varying the volume of the pumping chamber (64) to prevent a pressure increase in the pressure chamber to substantially cancel relatively high frequency vibrations.Type: ApplicationFiled: June 7, 2012Publication date: August 7, 2014Applicant: BEIJING WEST INDUSTRIES CO., LTD.Inventors: Eric Louis Schumann, David John Barta, Brent Wade Fourman
-
Publication number: 20140216869Abstract: A magnetorheological fluid-based hydraulic mount apparatus (20, 220) for supporting a vibration source on a base is disclosed. A main fluid passage (104, 304) extends between pumping chamber (64, 264) and receiving chamber (66, 266) for passing the fluid therebetween. Electromagnet coil (98, 298) variably generates a magnetic flux across the main fluid passage to variably change the damping stiffness of the mount. A rate dip track passage (120, 320) extends between the pumping chamber (64, 264) and receiving chamber (66, 266) for oscillating the magnetorheological fluid (68, 268) therethrough to decrease the dynamic stiffness of the mount apparatus (20, 220) at predetermined frequencies.Type: ApplicationFiled: July 12, 2012Publication date: August 7, 2014Applicant: BEIJINGWEST INDUSTRIES CO, LTD.Inventors: Eric Louis Schumann, David John Barta, Brent Wade Fourman, Stephen Lewis Setty
-
Publication number: 20140217660Abstract: A tie bar assembly includes front and rear units each including inner inserts interconnected with outer inserts with webs of elastomeric material. A pole sub-assembly is disposed between the units. The pole sub-assembly and the units define front and rear fluid chambers containing a magneto-rheological fluid. Fluid orifices are disposed through the pole sub-assembly for flow of the magneto-rheological fluid between fluid chambers. An electromagnet coil generates an electromagnetic field to affect viscosity of the magneto-rheological fluid. A connecting rod connects inner inserts and is slidably disposed through the pole sub-assembly for causing movement of the magneto-rheological fluid between fluid chambers. A displacement sensor detects movement to generate a signal to the electromagnet coil. Front and rear travel cushions are each disposed on the inner inserts for limiting the movement of the inner inserts toward the pole sub-assembly.Type: ApplicationFiled: June 4, 2012Publication date: August 7, 2014Applicant: BEIJING WEST INDUSTRIES CO., LTD.Inventors: Stephen Lewis Setty, David John Barta, Brent Wade Fourman, Eric Louis Schumann, Steven E. Pyle