Patents by Inventor Eric M. Moore

Eric M. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954214
    Abstract: Methods and systems for managing and/or processing a blockchain to maintain data security for confidential and/or personal data are provided. According to certain aspects, the disclosed data security techniques may enable access sharing functionality utilizing the blockchain. For example, access sharing may be utilized to share policy information. The policy information may be associated with a smart contract. Accordingly, the policy information may be encrypted using a public key for the smart contract and compiled into a block of the blockchain. In response to a request to provide access to the information to a particular node, the private key for the smart contract may be encrypted using the public key for the particular node and compiled into a block of the blockchain.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: April 9, 2024
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Melinda Teresa Magerkurth, Eric Bellas, Jaime Skaggs, Shawn M. Call, Eric R. Moore, Vicki King, Burton J. Floyd, David Turrentine, Steven T. Olson, Timothy Caleb Wells, Corin Rebekah Chapman, Edward W. Breitweiser, Robert Gomez, Shelia Cummings Smith
  • Publication number: 20240111881
    Abstract: Methods and systems for processing a blockchain comprising a plurality of immutable sales records corresponding to sales made by agents of an entity are provided. According to certain aspects, a transaction request indicating a sale made by an agent of the entity may be received at a first node. A block including a sales record indicating the sale made by the agent may be added to a blockchain and transmitted to another node for validation. The first node may add the block to a copy of the blockchain, where the block may be identified by a hash value that references a previous block in the blockchain that includes at least one additional sales record.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 4, 2024
    Inventors: Melinda Teresa Magerkurth, Eric Bellas, Jaime Skaggs, Shawn M. Call, Eric R. Moore, Vicki King, Burton J. Floyd, David Turentine, Steven T. Olson, Timothy Caleb Wells, Corin Rebekah Chapman, Edward W. Breitweiser, Robert Gomez, Shelia Cummings Smith
  • Publication number: 20240095846
    Abstract: A shared ledger operated by a group of network participants according to a set of consensus rules manages and resolves subrogation claims between a clamant and a defendant with arbitration. Evidence regarding the value of the subrogation claim is sent to the shared ledger by the parties to the subrogation claim such as sending data to a smart contract deployed on the shared ledger. The parties to the subrogation claim or entities that are not parties to the subrogation claim may broadcast data relating to fault to the blockchain. The data relating to fault may be evaluated by the parties or entities acting on the parties' behalf to determine fault. A fault determination may be broadcast to the blockchain based upon the analysis of the data relating to fault. Once the claim is resolved, arbitrator may release funds on the chain to the prevailing party or may accept confirmation that any payments have been made between the parties off-chain.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Shawn M. Call, Jaime Skaggs, Eric Bellas, Douglas A. Graff, William J. Leise, Vicki King, Jacob J. Alt, Eric R. Moore, Stacie A. McCullough
  • Patent number: 11914728
    Abstract: Methods and systems for managing and/or processing a blockchain to maintain data security for confidential and/or personal data are provided. According to certain aspects, the disclosed data security techniques may enable access sharing functionality utilizing the blockchain. For example, access sharing may be utilized to file documents, share policy information, and/or comply with an audit. The data security techniques disclosed herein also enable the use of smart contracts to transfer funds associated with payment obligations and/or other forms of blockchain based payments, comply with anti-money laundering requirements, report industry data, validate interest payments and/or maintain agent sales data. Data security may be achieved through the use of public key/private key encryption techniques.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: February 27, 2024
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Melinda Teresa Magerkurth, Eric Bellas, Jaime Skaggs, Shawn M. Call, Eric R. Moore, Vicki King, Burton J. Floyd, David Turrentine, Steven T. Olson, Timothy Caleb Wells, Corin Rebekah Chapman, Edward W. Breitweiser, Robert Gomez, Shelia Cummings Smith
  • Patent number: 11607775
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 21, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 11597059
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 7, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20220001516
    Abstract: A coated abrasive belt (100) includes a belt backing (110) and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements (160) secured to at least a portion of a major surface of the belt backing (110) by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal (192) and vertical lines (194) of a rectangular grid pattern. Each abrasive element has at least two triangular abrasive platelets (130), each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the belt backing A first portion of the abrasive elements is arranged in alternating first rows (16) wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines (194).
    Type: Application
    Filed: November 14, 2019
    Publication date: January 6, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Publication number: 20210370473
    Abstract: A coated abrasive disc includes an abrasive layer disposed on a major surface of a disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed from the major surface at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern, wherein the intersections of the rectangular grid pattern have an areal density defined by C/(LT) where C is a unitless coverage factor having a value between 0.1 and 0.4, L is the average major triangular abrasive platelet side length and T is the average triangular abrasive platelet thickness. At least 70 percent of the intersections have a triangular abrasive platelet disposed thereat.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 2, 2021
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: 11105018
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 31, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Publication number: 20200398402
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are disposed at least 70 percent of regularly-spaced points along an arithmetic spiral pattern extending outwardly toward the outer circumference. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of each of the triangular abrasive platelets disposed facing and proximate to the disc backing, and is lengthwise aligned within 10 degrees of being tangent to the arithmetic spiral pattern. Methods of making and using the coated abrasive disc are also disclosed.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 24, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200391352
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. At least 70 percent of the intersections have one of the abrasive elements disposed thereat. Each of the abrasive elements has two triangular abrasive platelets. Each one of the triangular abrasive platelets has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing. The abrasive elements are arranged such that the triangular abrasive platelets in orthogonally adjacent abrasive elements have a Z-axis rotational orientation within 10 degrees of perpendicular to each other.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 17, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200384610
    Abstract: A coated abrasive disc includes a disc backing and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements secured to a major surface of the disc backing by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern. Each abrasive element has two triangular abrasive platelets, each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the disc backing. A first portion of the abrasive elements is arranged in alternating first rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines. A second portion of the abrasive elements is arranged in alternating second rows wherein the triangular abrasive platelets are disposed lengthwise aligned with the horizontal lines.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 10, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20200346322
    Abstract: A coated abrasive disc includes a disc backing having an outer circumference. An abrasive layer is disposed on the disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed at regularly-spaced points along a spiral pattern extending outwardly toward the outer circumference. Each triangular abrasive platelet has respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of at least 90 percent of the triangular abrasive platelets is disposed facing and proximate to the disc backing, and at least 70 percent of the triangular abrasive platelets are disposed in a recurring sequential orientation having an oscillating Z-axis rotational orientation of the first respective sidewall relative to the tangents to the spiral pattern at regularly-spaced points.
    Type: Application
    Filed: November 16, 2018
    Publication date: November 5, 2020
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20190338447
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 7, 2019
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: 10400354
    Abstract: A process and apparatus for producing a dimensionally stable melt blown nonwoven fibrous web. The process includes forming a multiplicity of melt blown fibers by passing a molten stream including molecules of at least one thermoplastic semi-crystalline (co)polymer through at least one orifice of a melt-blowing die, subjecting at least a portion of the melt blown fibers to a controlled in-flight heat treatment operation at a temperature below a melting temperature of the at least one thermoplastic semi-crystalline (co)polymer immediately upon exiting from the at least one orifice, and collecting at least some of the melt blown fibers subjected to the controlled in-flight heat treatment operation on a collector to form a non-woven fibrous structure. The nonwoven fibrous structure exhibits a Shrinkage less than a Shrinkage measured on an identically-prepared structure including only fibers not subjected to the controlled in-flight heat treatment operation, and generally less than 15%.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: September 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Daniel J. Zillig, Sachin Talwar, Randy L. Christiansen, Michael D. Romano, Eric M. Moore, Pamela A. Percha, Liming Song, Myles L. Brostrom, Michael D. Swan
  • Patent number: D862538
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 8, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: D870782
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 24, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: D879164
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Patent number: D879165
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Patent number: D879166
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 24, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert