Patents by Inventor Eric M. Schneider

Eric M. Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10758655
    Abstract: This document discusses, among other things, systems and methods to reduce ischemic or metabolic injury to a patient's heart. A system to reduce ischemic or metabolic injury to a patient's heart may include a pulse generator for generating electrical pulses or shock, a pacing lead with at least one pacing electrode configured to deliver electrical pulses received from the pulse generator to the patient's heart, a controller configured to control timing of electrical pulses to reduce wall stress of the heart, and a reservoir, fluidically coupled to a lumen and a pump, wherein the pump is configured, under control of the controller, to move contents from the reservoir through the lumen to an area of the heart with the reduced wall stress, wherein the contents include autologous respiration-competent mitochondria or other respiratory-promoting agents.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: September 1, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barbara Ann Huibregtse, Thomas John Herbst, Craig Stolen, Eric M. Schneider, Lynne E. Swanson, Lili Liu
  • Publication number: 20180043071
    Abstract: This document discusses, among other things, systems and methods to reduce ischemic or metabolic injury to a patient's heart. A system to reduce ischemic or metabolic injury to a patient's heart may include a pulse generator for generating electrical pulses or shock, a pacing lead with at least one pacing electrode configured to deliver electrical pulses received from the pulse generator to the patient's heart, a controller configured to control timing of electrical pulses to reduce wall stress of the heart, and a reservoir, fluidically coupled to a lumen and a pump, wherein the pump is configured, under control of the controller, to move contents from the reservoir through the lumen to an area of the heart with the reduced wall stress, wherein the contents include autologous respiration-competent mitochondria or other respiratory-promoting agents.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Barbara Ann Huibregtse, Thomas John Herbst, Craig Stolen, Eric M. Schneider, Lynne E. Swanson, Lili Liu
  • Patent number: 9572696
    Abstract: A stent loading and delivery system, the delivery system comprising an inner elongate tubular member having a proximal end and a distal end, an intermediate elongate tubular member having a proximal end and a distal end in sliding relationship to said inner elongate tubular member and an external elongate tubular member having a proximal end and a distal end in sliding relationship to said intermediate elongate tubular member, said intermediate elongate tubular member comprising a stop mechanism at its proximal end, wherein the stop mechanism prevents the external elongate tubular member from being slid past the stop mechanism when the external elongate tubular member is slid in a proximal direction.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: February 21, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Eric M. Schneider, Jeffrey V. Bean, Andrew Kendall Hollett
  • Publication number: 20160287163
    Abstract: Methods and devices for locating and dilating a stricture are disclosed herein. In some embodiments, a device for locating strictures comprises an elongate member having a proximal end and a distal end. In at least some additional embodiments, a stopper is attached to the distal end of the elongate member. Additionally, in at least some examples, distance markings are disposed on the elongate member.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: JOHN B. GOLDEN, PETER L. DAYTON, GARY TRENDEL, MEGAN HODSON, MICHAEL POWERS, MILFORD MCCRARY, SARAH PROZELLER, YOUSEF AWWAD, JONATHAN ZOLL, ERIC M. SCHNEIDER, BENEDICTA C. CHUMO, BRIANA J. MORETTI, AMANDA L. SMITH, TARA A. JAROBSKI
  • Patent number: 9387104
    Abstract: A loading basket is secured at its proximal end to a portion of a delivery device. The stent engages with the interior of the stent basket when loaded onto the delivery device to prevent shifting or movement of the stent during delivery of the stent to a desired location within the bodily lumen. In at least one embodiment, the loading basket has a proximal end, a distal end, and a braided surface. The loading basket comprises a proximal end portion, a proximal transition portion, a body portion, a distal transition portion, a distal end portion, and an angled inward distal end. When loaded onto the delivery device, the outer surface of the stent contacts at least the angled inward distal end of the delivery device and movement of the stent is prevented.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 12, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Ra Nam, Mark Wood, John Pereira, Eric M. Schneider, William C. Bertolino, Naroun Suon
  • Publication number: 20160128854
    Abstract: A stent loading and delivery system, the delivery system comprising an inner elongate tubular member having a proximal end and a distal end, an intermediate elongate tubular member having a proximal end and a distal end in sliding relationship to said inner elongate tubular member and an external elongate tubular member having a proximal end and a distal end in sliding relationship to said intermediate elongate tubular member, said intermediate elongate tubular member comprising a stop mechanism at its proximal end, wherein the stop mechanism prevents the external elongate tubular member from being slid past the stop mechanism when the external elongate tubular member is slid in a proximal direction.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Inventors: Eric M. Schneider, Jeffrey V. Bean, Andrew Kendall Hollett
  • Publication number: 20160081675
    Abstract: A device for collecting a tissue sample includes an outer sheath extending from a proximal end to a distal end and including a lumen extending therethrough. The device also includes a needle movably housed within the outer sheath. The needle extends from a proximal end to a serrated distal end and including a channel extending therethrough. The needle is longitudinally movable relative to the outer sheath between an insertion configuration, in which the distal end of the needle is proximal of the distal end of the outer sheath, and a tissue collecting configuration, in which the distal end of the needle extends distally past the distal end of the outer sheath to penetrate tissue and collect a tissue sample in the channel. In addition, the device includes a drive mechanism rotating a distal portion of the needle about a longitudinal axis thereof as the needle is moved between the insertion and tissue collecting configurations.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 24, 2016
    Inventors: John B. Golden, Kirsten Viering, Matthew Donovan, Eric M. Schneider, Dylan Murphy, Michael McBrien, Mahfuza Ahmed, Amie Preston, Daniel R. Quinn
  • Patent number: 9265639
    Abstract: A stent loading and delivery system, the delivery system comprising an inner elongate tubular member having a proximal end and a distal end, an intermediate elongate tubular member having a proximal end and a distal end in sliding relationship to said inner elongate tubular member and an external elongate tubular member having a proximal end and a distal end in sliding relationship to said intermediate elongate tubular member, said intermediate elongate tubular member comprising a stop mechanism at its proximal end, wherein the stop mechanism prevents the external elongate tubular member from being slid past the stop mechanism when the external elongate tubular member is slid in a proximal direction.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: February 23, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Eric M. Schneider, Jeffrey V. Bean, Andrew Kendall Hollett
  • Publication number: 20150073528
    Abstract: A stent loading and delivery system, the delivery system comprising an inner elongate tubular member having a proximal end and a distal end, an intermediate elongate tubular member having a proximal end and a distal end in sliding relationship to said inner elongate tubular member and an external elongate tubular member having a proximal end and a distal end in sliding relationship to said intermediate elongate tubular member, said intermediate elongate tubular member comprising a stop mechanism at its proximal end, wherein the stop mechanism prevents the external elongate tubular member from being slid past the stop mechanism when the external elongate tubular member is slid in a proximal direction.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Eric M. Schneider, Jeffrey V. Bean, Andrew Kendall Hollett
  • Patent number: 8535369
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including translucent layers, opaque layers, and a braid composed of helically wound metal filaments. The outer catheter has a translucent distal adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained. Radiopaque markers can be mounted to the outer catheter and to an inner catheter used to deploy the prosthesis, to afford a combined visual and fluoroscopic monitoring for enhanced accuracy in positioning the prosthesis, both before and during its deployment.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: September 17, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Publication number: 20120310325
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including translucent layers, opaque layers, and a braid composed of helically wound metal filaments. The outer catheter has a translucent distal adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained. Radiopaque markers can be mounted to the outer catheter and to an inner catheter used to deploy the prosthesis, to afford a combined visual and fluoroscopic monitoring for enhanced accuracy in positioning the prosthesis, both before and during its deployment.
    Type: Application
    Filed: July 20, 2012
    Publication date: December 6, 2012
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Patent number: 8226702
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jennifer E Raeder-Devens, Susan I Shelso, James F Hemerick, Eric M Schneider, Heather L Getty, Doreen M Borgmann, Kakao Sisombath, Jeffrey A Helgerson
  • Publication number: 20120172962
    Abstract: A loading basket is secured at its proximal end to a portion of a delivery device. The stent engages with the interior of the stent basket when loaded onto the delivery device to prevent shifting or movement of the stent during delivery of the stent to a desired location within the bodily lumen. In at least one embodiment, the loading basket has a proximal end, a distal end, and a braided surface. The loading basket comprises a proximal end portion, a proximal transition portion, a body portion, a distal transition portion, a distal end portion, and an angled inward distal end. When loaded onto the delivery device, the outer surface of the stent contacts at least the angled inward distal end of the delivery device and movement of the stent is prevented.
    Type: Application
    Filed: December 22, 2011
    Publication date: July 5, 2012
    Applicant: BOSTON SCIENTIFIC SCIMED, INC
    Inventors: Ra Nam, Mark Wood, John Pereira, Eric M. Schneider, William C. Bertolino, Naroun Suon
  • Publication number: 20120172964
    Abstract: A stent loading and delivery system, the delivery system comprising an inner elongate tubular member having a proximal end and a distal end, an intermediate elongate tubular member having a proximal end and a distal end in sliding relationship to said inner elongate tubular member and an external elongate tubular member having a proximal end and a distal end in sliding relationship to said intermediate elongate tubular member, said intermediate elongate tubular member comprising a stop mechanism at its proximal end, wherein the stop mechanism prevents the external elongate tubular member from being slid past the stop mechanism when the external elongate tubular member is slid in a proximal direction.
    Type: Application
    Filed: December 16, 2011
    Publication date: July 5, 2012
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Eric M. Schneider, Andrew Hollett, Jeffery V. Bean
  • Publication number: 20090228092
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Application
    Filed: May 18, 2009
    Publication date: September 10, 2009
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Patent number: 6726712
    Abstract: A prosthesis delivery and deployment device includes an elongated and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: April 27, 2004
    Assignee: Boston Scientific Scimed
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Publication number: 20030050686
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Application
    Filed: October 25, 2002
    Publication date: March 13, 2003
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson