Patents by Inventor Eric Maurer

Eric Maurer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972873
    Abstract: Methods for treating a patient are provided. These methods may include receiving scan data of a patient's teeth, forming a modified image of the teeth to simulate a dental treatment, combining the modified image of the teeth with an image of the patient's face to show an image of the patient's smile as it would appear according to the dental treatment, displaying the modified image to the patient, and treating the patient according to the simulated dental treatment.
    Type: Grant
    Filed: November 4, 2022
    Date of Patent: April 30, 2024
    Assignee: Align Technology, Inc.
    Inventors: Michelle Stone-Collonge, Eric E. Kuo, Rick M. Matty, Fabio Pettinati, Thomas Maurer, Dzmitry Sanko
  • Patent number: 11002275
    Abstract: A compressor may include a non-orbiting scroll, an orbiting scroll, a driveshaft and an Oldham coupling. The orbiting scroll meshingly engages the non-orbiting scroll. The driveshaft includes a crankpin engaging the orbiting scroll and driving the orbiting scroll in an orbital path relative to the non-orbiting scroll. The Oldham coupling may include an annular body and a plurality of first keys extending from the annular body and slidably received in slots formed in the orbiting scroll. Each of the first keys may include a first post and a first cap attached to the first post. The first posts may be integrally formed with the annular body from a first material. The first caps may be formed from a second material.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: May 11, 2021
    Assignee: Emerson Climate Technologies, Inc.
    Inventors: Paul L. Fullenkamp, Roxana E. L. Ruxanda, Eric A. Maurer, Jesús Ángel Nohales Herraiz, Francis Beckers, Vincent Cloosen, Laurent Grignard
  • Patent number: 10895550
    Abstract: Biosensor systems including a measurement device and test sensors including at least three independently addressable electrodes, with at least two of the electrodes being substantially chemically isolated are disclosed. One or more working electrodes may be combined with two or more counter electrodes. The two or more counter electrodes may operate at different potentials to provide for multi-analyte electrochemical analysis. Analysis methods are provided to perform multi-analyte electrochemical analysis and test sensors are provided having resistance to chemical mixing between secondary analysis regions.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: January 19, 2021
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Weiping Zhong, Joseph E. Perry, Eric Maurer, Sung-Kwon Jung
  • Publication number: 20200173952
    Abstract: A biosensor system determines analyte concentration from an output signal generated from a light-identifiable species ora redox reaction of the analyte. The biosensor system compensates at least 50% of the total error in the output signal with a primary function and compensates a portion of the remaining error with a residual function. The amount of error compensation provided by the primary and residual functions may be adjusted with a weighing coefficient. The compensation method including a primary function and a residual function may be used to determine analyte concentrations having improved accuracy from output signals including components attributable to error.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventors: Huan-Ping Wu, Bern Harrison, Eric Maurer
  • Patent number: 10591436
    Abstract: A biosensor system determines analyte concentration from an output signal generated from a light-identifiable species or a redox reaction of the analyte. The biosensor system compensates at least 50% of the total error in the output signal with a primary function and compensates a portion of the remaining error with a residual function. The amount of error compensation provided by the primary and residual functions may be adjusted with a weighing coefficient. The compensation method including a primary function and a residual function may be used to determine analyte concentrations having improved accuracy from output signals including components attributable to error.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 17, 2020
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Bern Harrison, Eric Maurer
  • Publication number: 20190383289
    Abstract: A compressor may include a non-orbiting scroll, an orbiting scroll, a driveshaft and an Oldham coupling. The orbiting scroll meshingly engages the non-orbiting scroll. The driveshaft includes a crankpin engaging the orbiting scroll and driving the orbiting scroll in an orbital path relative to the non-orbiting scroll. The Oldham coupling may include an annular body and a plurality of first keys extending from the annular body and slidably received in slots formed in the orbiting scroll. Each of the first keys may include a first post and a first cap attached to the first post. The first posts may be integrally formed with the annular body from a first material. The first caps may be formed from a second material.
    Type: Application
    Filed: August 29, 2019
    Publication date: December 19, 2019
    Applicant: Emerson Climate Technologies, Inc.
    Inventors: Paul L. FULLENKAMP, Roxana E.L. RUXANDA, Eric A. MAURER, Jesús Ángel NOHALES HERRAIZ, Francis BECKERS, Vincent CLOOSEN, Laurent GRIGNARD
  • Patent number: 10261044
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: April 16, 2019
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 10175194
    Abstract: A biosensor system including the underfill management system determines the analyte concentration in a sample from the at least one analytic output signal value. The underfill management system includes an underfill recognition system and an underfill compensation system. The underfill recognition system determines whether the test sensor initially is substantially full-filled or underfilled, indicates when the sample volume is underfilled so that additional sample may be added to the test sensor, and starts or stops the sample analysis in response to the sample volume. The underfill recognition system also may determine the initial degree of underfill. After the underfill recognition system determines the initial fill state of the test sensor, the underfill compensation system compensates the analysis based on the initial fill state of the test sensor to improve the measurement performance of the biosensor system for initially underfilled test sensors.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 8, 2019
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Eric A. Maurer
  • Publication number: 20180067071
    Abstract: Biosensor systems including a measurement device and test sensors including at least three independently addressable electrodes, with at least two of the electrodes being substantially chemically isolated are disclosed. One or more working electrodes may be combined with two or more counter electrodes. The two or more counter electrodes may operate at different potentials to provide for multi-analyte electrochemical analysis. Analysis methods are provided to perform multi-analyte electrochemical analysis and test sensors are provided having resistance to chemical mixing between secondary analysis regions.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Huan-Ping Wu, Weiping Zhong, Joseph E. Perry, Eric Maurer, Sung-Kwon Jung
  • Patent number: 9846136
    Abstract: Biosensor systems including a measurement device and test sensors including at least three independently addressable electrodes, with at least two of the electrodes being substantially chemically isolated are disclosed. One or more working electrodes may be combined with two or more counter electrodes. The two or more counter electrodes may operate at different potentials to provide for multi-analyte electrochemical analysis. Analysis methods are provided to perform multi-analyte electrochemical analysis and test sensors are provided having resistance to chemical mixing between secondary analysis regions.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 19, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Weiping Zhong, Joseph E. Perry, Eric Maurer, Sung-Kwon Jung
  • Patent number: 9658187
    Abstract: A biosensor with an underfill recognition system assesses whether to analyze a sample for one or more analytes in response to the volume of the sample. The underfill recognition system applies polling and test excitation signals to the sample. The polling signals generate one or more polling output signals, which maybe used to detect when a sample is present and to determine whether the sample has sufficient volume for analysis. The test excitation signal generates one or more test output signals, which may be used to determine one or more analyte concentrations in the sample.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: May 23, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Joseph E. Perry, Christine Trippel, Eric Maurer
  • Publication number: 20160356738
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 9459229
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 4, 2016
    Assignee: Ascenia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20160084792
    Abstract: The present invention relates to electrochemical sensor strips and methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL. A method of increasing the performance of a quantitative analyte determination also is provided.
    Type: Application
    Filed: December 10, 2015
    Publication date: March 24, 2016
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Publication number: 20160084794
    Abstract: A biosensor with an underfill recognition system assesses whether to analyze a sample for one or more analytes in response to the volume of the sample. The underfill recognition system applies polling and test excitation signals to the sample. The polling signals generate one or more polling output signals, which maybe used to detect when a sample is present and to determine whether the sample has sufficient volume for analysis. The test excitation signal generates one or more test output signals, which may be used to determine one or more analyte concentrations in the sample.
    Type: Application
    Filed: December 2, 2015
    Publication date: March 24, 2016
    Inventors: Huan-Ping Wu, Joseph E. Perry, Christine Trippel, Eric Maurer
  • Publication number: 20160077050
    Abstract: A biosensor system including the underfill management system determines the analyte concentration in a sample from the at least one analytic output signal value. The underfill management system includes an underfill recognition system and an underfill compensation system. The underfill recognition system determines whether the test sensor initially is substantially full-filled or underfilled, indicates when the sample volume is underfilled so that additional sample may be added to the test sensor, and starts or stops the sample analysis in response to the sample volume. The underfill recognition system also may determine the initial degree of underfill. After the underfill recognition system determines the initial fill state of the test sensor, the underfill compensation system compensates the analysis based on the initial fill state of the test sensor to improve the measurement performance of the biosensor system for initially underfilled test sensors.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 17, 2016
    Inventors: Huan-Ping Wu, Eric A. Maurer
  • Patent number: 9239312
    Abstract: The present invention relates to methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 19, 2016
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer
  • Patent number: 9234866
    Abstract: A biosensor with an underfill recognition system assesses whether to analyze a sample for one or more analytes in response to the volume of the sample. The underfill recognition system applies polling and test excitation signals to the sample. The polling signals generate one or more polling output signals, which maybe used to detect when a sample is present and to determine whether the sample has sufficient volume for analysis. The test excitation signal generates one or more test output signals, which may be used to determine one or more analyte concentrations in the sample.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: January 12, 2016
    Assignee: Bayer HealthCare LLC
    Inventors: Huan-Ping Wu, Joseph E. Perry, Christine Trippel, Eric Maurer
  • Patent number: 9222910
    Abstract: A biosensor system including the underfill management system determines the analyte concentration in a sample from the at least one analytic output signal value. The underfill management system includes an underfill recognition system and an underfill compensation system. The underfill recognition system determines whether the test sensor initially is substantially full-filled or underfilled, indicates when the sample volume is underfilled so that additional sample may be added to the test sensor, and starts or stops the sample analysis in response to the sample volume. The underfill recognition system also may determine the initial degree of underfill. After the underfill recognition system determines the initial fill state of the test sensor, the underfill compensation system compensates the analysis based on the initial fill state of the test sensor to improve the measurement performance of the biosensor system for initially underfilled test sensors.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: December 29, 2015
    Assignee: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Eric Maurer
  • Publication number: 20140305808
    Abstract: The present invention relates to methods of determining the concentration of an analyte in a sample or improving the performance of a concentration determination. The electrochemical sensor strips may include at most 8 ?g/mm2 of a mediator. The strips, the strip reagent layer, or the methods may provide for the determination of a concentration value having at least one of a stability bias of less than ±10% after storage at 50° C. for 4 weeks when compared to a comparison strip stored at ?20° C. for 4 weeks, a hematocrit bias of less than ±10% for whole blood samples including from 20 to 60% hematocrit, and an intercept to slope ratio of at most 20 mg/dL.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 16, 2014
    Applicant: BAYER HEALTHCARE LLC
    Inventors: Huan-Ping Wu, Christine D. Nelson, Hope Spradlin, Eric Maurer