Patents by Inventor Eric McDivitt

Eric McDivitt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9498262
    Abstract: A minimally invasive fixation system and method for providing access to a surgical site. The fixation system may include a holding assembly, the holding assembling preferably including a lateral implant holder which may be attached to a pedicle screw and a sleeve positioned in connection with the lateral implant holder to prevent the lateral implant holder from separating from the pedicle screw. The sleeve may further include a tissue protection portion to keep the tissue out of the surgical site. A holding sleeve may be operably connected to the holding assembly and pedicle screw and may be used to insert the pedicle screw into the body. Multiple constructs may be inserted into the body so that a portion of the holding assembly extends from the body and provides access to and visualization of the surgical site. A rod holder may also be used to insert a rod into the head of the screw. The rod may be held by the rod holder so that the rod may be angulated as the rod is inserted into the screw heads.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: November 22, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Brian R. Bankoski, Shaun Hanson, Ralph C. Solitario, Jr., Caryn E. Bundra, William N. Woodburn, Sr., Mark Rossney, Eric McDivitt, David Rathbun
  • Patent number: 9480507
    Abstract: An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 1, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Tom Overes, Robert Frigg, Silas Zurschmiede, Andreas Appenzeller, Jamie Manos, Daniel Vennard, Edward J. McShane, III, Joshua McManus, Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Lawton Laurence, Justin Coppes
  • Patent number: 9439681
    Abstract: The present disclosure includes a polyaxial bone fixation element for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The polyaxial bone fixation element preferably includes a bone anchor, a collet, a body, and a locking cap. The polyaxial bone fixation element preferably enables in-situ assembly. That is, the polyaxial bone fixation element is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body. Accordingly, the polyaxial bone fixation element enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body can be snapped-onto the bone anchor. The bone anchor preferably also includes a second tool interface so that a surgical instrument can be directly coupled to the bone anchor.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 13, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Thomas Keyer, Joseph Capozzoli, Eric McDivitt
  • Publication number: 20160206350
    Abstract: An anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod, which is integrally formed with a body of the anchor assembly. The anchor assembly includes a bone anchor, a collet, a body portion, a rod portion, and a locking cap. The anchor assembly is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body portion. The anchor assembly enables a surgeon to implant the bone anchor without the body portion to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the rod portion may be inserted into the rod-receiving channel of a second bone fixation element having a rod-receiving channel implanted at a second site and the body portion can be snapped-onto the bone anchor.
    Type: Application
    Filed: March 30, 2016
    Publication date: July 21, 2016
    Inventors: Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Boyd A. Wolf
  • Patent number: 9320546
    Abstract: An anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod, which is integrally formed with a body of the anchor assembly. The anchor assembly includes a bone anchor, a collet, a body portion, a rod portion, and a locking cap. The anchor assembly is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body portion. The anchor assembly enables a surgeon to implant the bone anchor without the body portion to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the rod portion may be inserted into the rod-receiving channel of a second bone fixation element having a rod-receiving channel implanted at a second site and the body portion can be snapped-onto the bone anchor.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 26, 2016
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Boyd Wolf
  • Publication number: 20150272635
    Abstract: An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
    Type: Application
    Filed: June 10, 2015
    Publication date: October 1, 2015
    Inventors: Tom Overes, Robert Frigg, Silas Zurschmiede, Andreas Appenzeller, Jamie Manos, Daniel Vennard, Edward J. McShane, III, Joshua McManus, Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Lawton Laurence, Justin Coppes
  • Patent number: 9060808
    Abstract: An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: June 23, 2015
    Assignee: DePuy Synthes Products, Inc.
    Inventors: Tom Overes, Robert Frigg, Silas Zurschmiede, Andreas Appenzeller, Jamie Manos, Daniel Vennard, Edward J. McShane, III, Joshua McManus, Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Lawton Laurence, Justin Coppes
  • Publication number: 20150142055
    Abstract: An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 21, 2015
    Inventors: Tom Overes, Robert Frigg, Silas Zurschmiede, Andreas Appenzeller, Jamie Manos, Daniel Vennard, Edward J. McShane, III, Joshua McManus, Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Lawton Laurence, Justin Coppes
  • Patent number: 8992576
    Abstract: A dynamic stabilization system may include an elongated spinal rod, at least two bone anchors attached to the elongated rod, and a dynamic member. One of the bone anchors allows translation of the spinal rod with respect to the bone anchor. The dynamic member comprises a body and an elastomeric element coupled to at least one side of the body. The body of the element is capable of being attached to the elongated spinal rod between the two bone anchors.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 31, 2015
    Assignee: DePuy Synthes Products, LLC
    Inventors: Tom Keyer, Eric McDivitt
  • Publication number: 20140142632
    Abstract: The present disclosure includes a polyaxial bone fixation element for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The polyaxial bone fixation element preferably includes a bone anchor, a collet, a body, and a locking cap. The polyaxial bone fixation element preferably enables in-situ assembly. That is, the polyaxial bone fixation element is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body. Accordingly, the polyaxial bone fixation element enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body can be snapped-onto the bone anchor. The bone anchor preferably also includes a second tool interface so that a surgical instrument can be directly coupled to the bone anchor.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: DEPUY SYNTHES PRODUCTS, LLC
    Inventors: Thomas Keyer, Joseph Capozzoli, Eric McDivitt
  • Patent number: 8663298
    Abstract: The present invention is directed a polyaxial bone fixation element for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The polyaxial bone fixation element preferably includes a bone anchor, a collet, a body, and a locking cap. The polyaxial bone fixation element preferably enables in-situ assembly. That is, the polyaxial bone fixation element is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body. Accordingly, the polyaxial bone fixation element enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body can be snapped-onto the bone anchor. The bone anchor preferably also includes a second tool interface so that a surgical instrument can be directly coupled to the bone anchor.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 4, 2014
    Assignee: DePuy Synthes Products, LLC
    Inventors: Thomas Keyer, Joseph Capozzoli, Eric McDivitt
  • Publication number: 20120041490
    Abstract: A minimally invasive system and method for coupling a spinal rod to a plurality of bone anchors implanted into a plurality of vertebral bodies. A plurality of bottom-loading polyaxial anchor seat assemblies having different vertical heights are chosen to pop over the heads of the implanted bone anchors and a spinal rod is more easily introduced and secured to the bone anchors. The variety of different heights that characterize the plurality of polyaxial anchor seat assemblies allows a surgeon to intraoperatively choose the appropriate offset for a particular spinal level during spinal corrections.
    Type: Application
    Filed: November 18, 2009
    Publication date: February 16, 2012
    Applicant: Synthes USA, LLC
    Inventors: R. Patrick Jacob, Eric McDivitt, Joseph Capozzoli, Thomas Keyer
  • Publication number: 20110270325
    Abstract: An anchor assembly for use in spinal fixation to interconnect a longitudinal spinal rod, which is integrally formed with a body of the anchor assembly. The anchor assembly includes a bone anchor, a collet, a body portion, a rod portion, and a locking cap. The anchor assembly is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body portion. The anchor assembly enables a surgeon to implant the bone anchor without the body portion to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the rod portion may be inserted into the rod-receiving channel of a second bone fixation element having a rod-receiving channel implanted at a second site and the body portion can be snapped-onto the bone anchor.
    Type: Application
    Filed: September 29, 2009
    Publication date: November 3, 2011
    Inventors: Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Boyd Wolf
  • Publication number: 20110106166
    Abstract: A revision connector is configured to couple a new spine fixation rod to a previously implanted spine fixation rod that is secured to a plurality of vertebrae. The new spine fixation rod can be implanted and secured to vertebrae that are caudal and/or cranial with respect to the previously secured vertebrae.
    Type: Application
    Filed: April 15, 2010
    Publication date: May 5, 2011
    Inventors: Tom Keyer, Eric McDivitt, Joseph Capozzoli, Christoph Meyer, Nicholas Theodore, Charles Kuntz
  • Publication number: 20100312280
    Abstract: An anchor-in-anchor fixation system is provided for securing underlying structure, such as bone. The fixation system includes a first bone anchor having a shaft for fixation to underlying bone, and a head that defines an internal bore. A second bone anchor extends through the bore and into underlying bone. A fixation assembly is also provided that includes one or more fixation systems coupled to an auxiliary attachment member configured for long bone fixation, spinal fixation, or fixation of other bones as desired.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 9, 2010
    Applicant: SYNTHES USA, LLC
    Inventors: Tom Overes, Robert Frigg, Silas Zurschmiede, Andreas Appenzeller, Jamie Manos, Daniel Vennard, Edward J. McShane, III, Joshua McManus, Thomas Keyer, Eric McDivitt, Joseph Capozzoli, Lawton Laurence, Justin Coppes
  • Publication number: 20100268284
    Abstract: A minimally invasive fixation system and method for providing access to a surgical site. The fixation system may include a holding assembly, the holding assembling preferably including a lateral implant holder which may be attached to a pedicle screw and a sleeve positioned in connection with the lateral implant holder to prevent the lateral implant holder from separating from the pedicle screw. The sleeve may further include a tissue protection portion to keep the tissue out of the surgical site. A holding sleeve may be operably connected to the holding assembly and pedicle screw and may be used to insert the pedicle screw into the body. Multiple constructs may be inserted into the body so that a portion of the holding assembly extends from the body and provides access to and visualization of the surgical site. A rod holder may also be used to insert a rod into the head of the screw. The rod may be held by the rod holder so that the rod may be angulated as the rod is inserted into the screw heads.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Inventors: Brian R. Bankoski, Shaun Hanson, Ralph C. Solitario, JR., Caryn E. Bundra, William N. Woodburns, SR., Mark Rossney, Eric McDivitt, David Rathbun
  • Publication number: 20100198272
    Abstract: The present invention is directed a polyaxial bone fixation element for use in spinal fixation to interconnect a longitudinal spinal rod with a patient's vertebra. The polyaxial bone fixation element preferably includes a bone anchor, a collet, a body, and a locking cap. The polyaxial bone fixation element preferably enables in-situ assembly. That is, the polyaxial bone fixation element is preferably configured so that in use, the bone anchor may be secured to the patient's vertebra prior to being received within the body. Accordingly, the polyaxial bone fixation element enables a surgeon to implant the bone anchor without the body to maximize visibility and access around the anchoring site. Once the bone anchor has been secured to the patient's vertebra, the body can be snapped-onto the bone anchor. The bone anchor preferably also includes a second tool interface so that a surgical instrument can be directly coupled to the bone anchor.
    Type: Application
    Filed: July 21, 2008
    Publication date: August 5, 2010
    Inventors: Thomas Keyer, Joseph Capozzoli, Eric McDivitt
  • Patent number: 7758584
    Abstract: A minimally invasive fixation system and method for providing access to a surgical site. The fixation system may include a holding assembly, the holding assembling preferably including a lateral implant holder which may be attached to a pedicle screw and a sleeve positioned in connection with the lateral implant holder to prevent the lateral implant holder from separating from the pedicle screw. The sleeve may further include a tissue protection portion to keep the tissue out of the surgical site. A holding sleeve may be operably connected to the holding assembly and pedicle screw and may be used to insert the pedicle screw into the body. Multiple constructs may be inserted into the body so that a portion of the holding assembly extends from the body and provides access to and visualization of the surgical site. A rod holder may also be used to insert a rod into the head of the screw. The rod may be held by the rod holder so that the rod may be angulated as the rod is inserted into the screw heads.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: July 20, 2010
    Assignee: Synthes USA, LLC
    Inventors: Brian R. Bankoski, Shaun Hanson, Ralph C. Solitario, Jr., Caryn E. Bundra, William N. Woodburn, Sr., Mark Rossney, Eric McDivitt, David Rathbun
  • Publication number: 20100152776
    Abstract: A dynamic stabilization system may include an elongated spinal rod, at least two bone anchors attached to the elongated rod, and a dynamic member. One of the bone anchors allows translation of the spinal rod with respect to the bone anchor. The dynamic member comprises a body and an elastomeric element coupled to at least one side of the body. The body of the element is capable of being attached to the elongated spinal rod between the two bone anchors.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 17, 2010
    Applicant: SYNTHES USA, LLC
    Inventors: Tom Keyer, Eric McDivitt
  • Publication number: 20070270842
    Abstract: A minimally invasive fixation system and method for providing access to a surgical site. The fixation system may include a holding assembly, the holding assembling preferably including a lateral implant holder which may be attached to a pedicle screw and a sleeve positioned in connection with the lateral implant holder to prevent the lateral implant holder from separating from the pedicle screw. The sleeve may further include a tissue protection portion to keep the tissue out of the surgical site. A holding sleeve may be operably connected to the holding assembly and pedicle screw and may be used to insert the pedicle screw into the body. Multiple constructs may be inserted into the body so that a portion of the holding assembly extends from the body and provides access to and visualization of the surgical site. A rod holder may also be used to insert a rod into the head of the screw. The rod may be held by the rod holder so that the rod may be angulated as the rod is inserted into the screw heads.
    Type: Application
    Filed: April 11, 2007
    Publication date: November 22, 2007
    Inventors: Brian Bankoski, Shaun Hanson, Raph Solitario, Caryn Bundra, William Woodburn, Mark Rossney, Eric McDivitt, David Rathbun