Patents by Inventor Eric McFarland

Eric McFarland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030032205
    Abstract: Methods and apparatus are provided for the preparation of a substrate having an array of diverse materials, the materials being deposited at spatially addressable, predefined regions. In particular, potential masking systems are provided which generate spatially and temporally varying electric, magnetic and chemical potentials across a substrate. These varying potentials are used to deposit components of source materials onto a substrate in a combinatorial fashion, thus creating arrays of materials that differ slightly in chemical composition, concentration, stoichiometry, and/or thickness. The diverse materials may be organized in discrete arrays, or they may vary continuously over the surface of the substrate. The shape of the potential allows the determination of the composition of the resulting materials at all locations on the substrate.
    Type: Application
    Filed: August 27, 2002
    Publication date: February 13, 2003
    Applicant: SYMYX TECHNOLOGIES
    Inventors: Eric McFarland, Earl Danielson, Martin Devenney, Christopher J. Warren
  • Publication number: 20030026736
    Abstract: An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
    Type: Application
    Filed: April 29, 2002
    Publication date: February 6, 2003
    Applicant: Symyx Technologies, Inc.
    Inventors: Damian A. Hajduk, Ralph B. Nielsen, Adam Safir, Leonid Matsiev, Eric McFarland, Paul Mansky
  • Patent number: 6494079
    Abstract: A method and apparatus for measuring properties of a fluid composition in a conduit includes a mechanical resonator connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the mechanical resonator, causing the mechanical resonator to oscillate. The input signal is then sent to the mechanical resonator and swept over a selected frequency range. The mechanical resonator's response over the frequency range depends on various characteristics of the fluid being tested, such as the temperature, viscosity, and other physical properties.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: December 17, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Publication number: 20020178787
    Abstract: A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a thickness shear mode resonator or a tuning fork resonator, connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the tuning fork, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the liquid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range, preferably less than 1 MHz to prevent the liquid being tested from exhibiting gel-like characteristics and causing false readings. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties.
    Type: Application
    Filed: July 23, 2002
    Publication date: December 5, 2002
    Applicant: Symyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Publication number: 20020155036
    Abstract: An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 24, 2002
    Applicant: Symyx Technologies, Inc.
    Inventors: Damian A. Hajduk, Ralph B. Nielsen, Adam Safir, Leonid Matsiev, Eric McFarland, Paul Mansky
  • Patent number: 6468806
    Abstract: Methods and apparatus are provided for the preparation of a substrate having an array of diverse materials, the materials being deposited at spatially addressable, predefined regions. In particular, potential masking systems are provided which generate spatially and temporally varying electric, magnetic and chemical potentials across a substrate. These varying potentials are used to deposit components of source materials onto a substrate in a combinatorial fashion, thus creating arrays of materials that differ slightly in chemical composition, concentration, stoichiometry, and/or thickness. The diverse materials may be organized in discrete arrays, or they may vary continuously over the surface of the substrate. The shape of the potential allows the determination of the composition of the resulting materials at all locations on the substrate.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: October 22, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Eric McFarland, Earl Danielson, Martin Devenney, Christopher J. Warren
  • Patent number: 6455316
    Abstract: Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: September 24, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Howard Turner, G. Cameron Dales, Lynn VanErden, Johannes A. M. VanBeek, Damian A. Hajduk, Ralph B. Nielsen, Paul Mansky, Leonid Matsiev, Pei Wang, Eric McFarland
  • Publication number: 20020098471
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Application
    Filed: January 21, 1999
    Publication date: July 25, 2002
    Inventors: W. HENRY WEINBERG, ERIC MCFARLAND, ISY GOLDWASSER, THOMAS BOUSSIE, HOWARD TURNER, JOHANNES A.M. VAN BEEK, VINCE MURPHY, TIMOTHY POWERS
  • Patent number: 6393895
    Abstract: A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a thickness shear mode resonator or a tuning fork resonator, connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the tuning fork, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the liquid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range, preferably less than 1 MHz to prevent the liquid being tested from exhibiting gel-like characteristics and causing false readings. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: May 28, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 6336353
    Abstract: A method and apparatus for measuring properties of a fluid composition includes a mechanical resonator connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the mechanical resonator, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the fluid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range. The mechanical resonator's response over the frequency range depends on various characteristics of the fluid being tested, such as the temperature, viscosity, and other physical properties. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: January 8, 2002
    Assignee: Symyx Technologies, Inc.
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Publication number: 20010010174
    Abstract: A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a thickness shear mode resonator or a tuning fork resonator, connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the tuning fork, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the liquid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range, preferably less than 1 MHz to prevent the liquid being tested from exhibiting gel-like characteristics and causing false readings. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties.
    Type: Application
    Filed: March 7, 2001
    Publication date: August 2, 2001
    Inventors: Leonid Matsiev, James Bennett, Eric McFarland
  • Patent number: 6248540
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometailic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large niumbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 19, 2001
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6030917
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: February 29, 2000
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6013199
    Abstract: This invention relates generally to new luminescent materials. Specifically, this invention relates to the discovery of phosphor materials in the forms of A.sub.2 BX.sub.4, ABX.sub.4-y :M and A.sub.3-z B.sub.5 X.sub.12 :M.sub.z. More specifically, this invention relates to the discovery of phosphor materials having compositions of matter in the forms, Sr.sub.2 CeO.sub.4, (Y.sub.0.82 Al.sub.0.07 La.sub.0.06)VO.sub.4 :Eu.sub.0.05 and (Y.sub.0.5 Gd.sub.0.5).sub.2.97 (Al.sub.0.5 Ga.sub.0.5).sub.5 O.sub.12 :CeO.sub.0.03.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: January 11, 2000
    Assignee: Symyx Technologies
    Inventors: Eric McFarland, Earl Danielson, Martin Devenney, Casper Reaves, Daniel M. Giaquinta, Damodara M. Poojary, Xin Di Wu, Josh H. Golden