Patents by Inventor Eric Paul Monteith

Eric Paul Monteith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912339
    Abstract: Self-supporting 3-D printed chassis structures are disclosed. Self-supporting ribs are selectively printed to walls of the structure to meet desired dynamic stiffness targets while maintaining a reduced mass. The self-supporting ribs can be used as both support structures (e.g., for outer walls) during 3-D printing and as stiffening structures when the chassis structure is in operation. In an embodiment, the chassis structure is printed such that no support structures are needed. Topology optimization can enable remaining unneeded internal ribs or supports to be removed, and a high inner spatial volume between ribs can be maintained to make maximum use of the part. In various embodiments, wall thicknesses can be maintained at or below 1-2 millimeters, which further reduces mass.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: February 27, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventor: Eric Paul Monteith
  • Patent number: 11872626
    Abstract: Techniques for joining nodes and subcomponents are presented herein. An apparatus in accordance with an aspect of the present disclosure comprises a 3-D printed first part having an interconnect co-printed with the first part such that the interconnect of the first part can float within the first part, and a 3-D printed second part having an interconnect co-printed with the second part such that the interconnect of the second part can float within the second part, wherein the interconnects of the first and second parts are configured to form a connection between the first and second parts.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: January 16, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Samuel Noah Miller, Matthew Cooper Keller, Eric Paul Monteith, Thomas Samuel Bowden, Jr.
  • Patent number: 11826953
    Abstract: 3-D build jobs having surrogate supports, 3-D printers using surrogate supports, and techniques to support vulnerable regions of build pieces using surrogate supports are disclosed. The surrogate supports are generated in a first material configuration and are offset via a gap from the vulnerable regions. The gap comprises a second material configuration, such as loose or partially fused powder on which the build piece can be supported during 3-D printing. In alternative embodiments, the gap instead includes thin manual ties or a solid body using material that is stronger but more amenable to breaking off without damaging the build piece. Post-processing steps are dramatically reduced as the surrogate supports and gaps facilitate virtually error-free separation from the build piece. In an embodiment, the surrogate supports include a support structure extending to a fixed base underneath, the fixed base being a build plate or a global surrogate.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 28, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Samuel Noah Miller, Michael Thomas Kenworthy, Eric Paul Monteith, Thomas Samuel Bowden, Jr.
  • Publication number: 20230235763
    Abstract: The present aspects include an assembly having discretized and segmented joint architecture. The assembly comprises a first structure including an outer wall and an inner wall, wherein the outer wall and the inner wall extend from a base of the first structure, and define a groove, and a plurality of connecting walls extending between the outer wall and the inner wall such that the groove is divided into a plurality of groove segments defined by the outer wall, the inner wall, and the plurality of connecting walls. The assembly further comprises a second structure including a plurality of tongue segments which extend into the plurality of groove segments. A first adhesive is inserted into the groove, thereby bonding the plurality of tongue segments within the plurality of groove segments such that the first and second structures are fixed together.
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Bahram ISSARI, Shahan Soghomon KASNAKJIAN, Eric Paul MONTEITH, Lukas Philip CZINGER, Samuel Noah MILLER, Chor Yen YAP, Matthew Cooper KELLER
  • Publication number: 20220203452
    Abstract: Techniques for joining nodes and subcomponents are presented herein. An apparatus in accordance with an aspect of the present disclosure comprises a 3-D printed first part having an interconnect co-printed with the first part such that the interconnect of the first part can float within the first part, and a 3-D printed second part having an interconnect co-printed with the second part such that the interconnect of the second part can float within the second part, wherein the interconnects of the first and second parts are configured to form a connection between the first and second parts.
    Type: Application
    Filed: November 5, 2021
    Publication date: June 30, 2022
    Inventors: Samuel Noah MILLER, Matthew Cooper KELLER, Eric Paul MONTEITH, Thomas Samuel BOWDEN, JR.
  • Publication number: 20210214013
    Abstract: Self-supporting 3-D printed chassis structures are disclosed. Self-supporting ribs are selectively printed to walls of the structure to meet desired dynamic stiffness targets while maintaining a reduced mass. The self-supporting ribs can be used as both support structures (e.g., for outer walls) during 3-D printing and as stiffening structures when the chassis structure is in operation. In an embodiment, the chassis structure is printed such that no support structures are needed. Topology optimization can enable remaining unneeded internal ribs or supports to be removed, and a high inner spatial volume between ribs can be maintained to make maximum use of the part. In various embodiments, wall thicknesses can be maintained at or below 1-2 millimeters, which further reduces mass.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 15, 2021
    Inventor: Eric Paul Monteith
  • Publication number: 20200079028
    Abstract: 3-D build jobs having surrogate supports, 3-D printers using surrogate supports, and techniques to support vulnerable regions of build pieces using surrogate supports are disclosed. The surrogate supports are generated in a first material configuration and are offset via a gap from the vulnerable regions. The gap comprises a second material configuration, such as loose or partially fused powder on which the build piece can be supported during 3-D printing. In alternative embodiments, the gap instead includes thin manual ties or a solid body using material that is stronger but more amenable to breaking off without damaging the build piece. Post-processing steps are dramatically reduced as the surrogate supports and gaps facilitate virtually error-free separation from the build piece. In an embodiment, the surrogate supports include a support structure extending to a fixed base underneath, the fixed base being a build plate or a global surrogate.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 12, 2020
    Inventors: Samuel Noah Miller, Michael Thomas Kenworthy, Eric Paul Monteith, Thomas Samuel Bowden, JR.